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1. Introduction

In the past 20 years in South Korea, underwater vehicles—which can 

be used for various purposes, such as marine exploration and military 

use—have been actively researched (Bae and Sohn, 2009; Ko et al., 

2013). Despite the emerging utilization of aquatic bodies, not much 

research data related to their varied linearities have been revealed, 

compared to the results published for various surface-piercing vessels. 

In general, the estimation of maneuvering performance is an 

important factor in the initial design stage of surface vehicle 

development. The maneuvering performance can be predicted using 

the following two methods: captive model test and free-running model 

test. The prediction method using the free-running model test shows 

the closest results to the maneuvering performance of a vehicle; 

however, it is difficult to build a free-running system and conduct 

tests. Therefore, the maneuvering performance is mostly predicted by 

measuring the force and moment acting on the hull, using the captive 

model test. There is another prediction method, based on sea-trial data 

that have been researched and accumulated thus far. With the recent 

development of computer hardware, performance prediction through 

virtual captive model testing or virtual planar motion mechanism is 

being actively performed using computational fluid dynamics (CFD) 

simulation. 

Conversely, applying the same method of predicting the 

performance of a surface vehicle for predicting the maneuvering 

performance of an underwater vehicle requires watertightness of the 

model, as the experiment for a captive model test is conducted under 

the free surface, which results in increased production cost and 

difficulties in preparing the test apparatus. The free-running model test 

conducted for an underwater vehicle is more difficult than that 

conducted for a surface vehicle; moreover, no previously reviewed or 

disclosed trial run data is available.

For this reason, CFD can be easily used for predicting the 

maneuvering performance of an underwater vehicle; in fact, this has 

been extensively researched (Singh et al., 2017; Cheon et al., 2018).

Therefore, this study aims to examine the hydrodynamic force 

acting on the forward and static drift motions of an underwater vehicle 

using CFD, based on Reynolds-averaged Navier–Stokes (RANS) 

equations. 

Star-CCM+, a commercial software, and OpenFOAM, an open- 
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source tool kit, are used as the CFD solvers. In addition, to examine the 

effectiveness of the CFD analysis results and usefulness of CFD, the 

obtained results are compared with those obtained using the captive 

model tests conducted by Bae and Sohn (2009) in a circular water 

channel (CWC) for the same linear underwater vehicle. Meanwhile, to 

verify the previously obtained results, retests are conducted using the 

same unmanned underwater vehicle (UUV) model, to compare and 

review the final results.

2. Experimental and Numerical Analysis Conditions

We conducted a resistance test and static drift test to study the 

maneuvering hydrodynamic forces acting on a Manta-type UUV, 

through an experiment and a CFD analysis. Table 1 shows the 

maneuvering hydrodynamic derivatives obtained from each test.

Table 1 Hydrodynamic derivatives obtained from each test

Item
Maneuvering

hydrodynamic derivative

Resistance test ′

Static drift test

Surge  ′, ′, ′
Heave  ′, ′, ′, ′
Pitch ′, ′, ′, ′

2.1 Geometric Specification of Manta-type UUV

Among the underwater vehicles, a Manta-type UUV model, which 

has already been studied, was selected as the target vehicle for this 

(a) Horizontal plan

(b) Manta UUV profile

Fig. 1 Drawings of Manta-type UUV

Table 2 Principal dimensions of Manta-type UUV

Manta UUV & Model principal

Item Manta model

Length (m) 12 1.2

Breadth (m) 4.4 0.44

Height (m) 1.2 0.12

Centroid (m) (from nose) 6.333 0.6333

Scale ratio 0.1

study. Fig. 1 shows the shape of the Manta model, and Table 2 lists its 

dimensions.

2.2 Experimental Conditions

The experiment was conducted in a CWC at Korea Maritime and 

Ocean University, whose specifications are listed in Table 3. As shown 

in Fig. 2, the hydrodynamic force acting on the Manta-type UUV was 

measured for 3 min, twice for each experimental condition, using a 

three-component force transducer with capacities of ±50 N for force 

( ,  ) and ±10 N-m for moment ( ).

Table 3 CWC details

CWC details

Type
2 Impeller vertical type 

(OV2-60B)

Dimensions whole body L : 12.5 m, W : 2.2 m, H : 5.2 m 

Dimensions measuring section L : 5 m, W : 1.8 m, H : 1.2 m 

Water capacity 60 t

Performance Max. 2.0 m/s

Driving system Impeller motor AC22KWX2SETS

Date MFD JULY 1990

Fig. 2 Three-component force transducer

2.2.1 Resistance test

In this study, the same velocity as that used for the Manta UUV in 

the model test conducted by Bae and Sohn (2009) was selected using 

the Reynolds number, whose details are presented in Table 4. In the 

subsequent results,  denotes the velocity used in each test and the 

CFD analysis.
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Table 4 Conditions for resistance test

Velocity (m/s) 0.32, 0.4, 0.5, 0.6

2.2.2 Static drift test

A static drift test was conducted to experimentally measure the 

surge force, heave force, and pitch moment, which are the vertical 

hydrodynamic damping forces acting on the model. Owing to the 

limited capacity of the three-component force transducer, the elevation 

test was conducted only at 0.32 and 0.4 m/s under the conditions listed 

in Table 5. As shown in Fig. 3, the velocity was measured at 

measurement points 15 cm away from the center, left, and right of the 

hull, to confirm if the velocity in the circular water tank was uniformly 

distributed during the static drift test. 

Table 5 Conditions for static drift test

Velocity (m/s) Drift angle (°)

0.32 ±0, 3, 6, 9, 12, 15, 20

0.4 ±0, 5, 10, 15, 20

Fig. 3 Velocity calibration measuring point

2.3 Numerical Analysis Conditions

The CFD solver mainly used in this study was Star-CCM+, which 

performed numerical analysis to understand the hydrodynamic forces 

and phenomena acting on the underwater vehicle, as mentioned in the 

Introduction. To confirm the reliability of the numerical analysis result, 

according to the difference between the Star-CCM+ solver and 

interFOAM, which is the transient-flow solver of OpenFOAM, a 

numerical analysis was conducted using the same grid mesh and 

numerical technique as those used for OpenFOAM under certain 

conditions in Table 7. 

The size of the computational domain used for the CFD analysis was 

set similarly to the measuring points set for the CWC, as shown in Fig. 

4. The volume-of-fluid technique was used for the governing equation 

of the multiphase flow, and  was used as the turbulence model. 

Table 6 shows the details of the numerical techniques applied to the 

analysis.

As shown In the table, the analysis time was set to 50 s to allow the 

forces acting on the vehicle to converge sufficiently. Fig. 5 presents 

the results obtained for the time-step sensitivity test, indicating the 

Table 6 Conditions for CFD (Star-CCM+ & OpenFOAM)

Item Applied techniques

Space Three dimensional

Time
Implicit unsteady

Solve time: 50.0 s | Time step: 0.01 s | Iteration: 5

Courant No. 0.04096 – 0.0768

Material Eulerian multiphase – Volume of fluid (VOF)

Viscous Turbulent - 

Boundary 
condition

(1) Hull: Wall
(2) Bottom: Wall

(3) Inlet, Side, Top: Velocity inlet
(4) Outlet: Pressure outlet

Damping zone (0.2 m) from (3), (4)

Number of cell Approximately 2.33 million

y+ Min.: 0.058, Average: 0.925, Max.: 40.394

(a) Refinement grid mesh in CFD

(b) Set boundary condition in CFD

Fig. 4 Grid system in CFD

Fig. 5 Results obtained for time-step sensitivity test
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surge force at a specific drift angle. According to the results, there 

were slight differences in the analysis results at a drift angle of –20°. 

However, there was no difficulty in setting the time step to 0.01 s, 

considering the efficiency of the calculation. When assuming the 

computational domain to be a CWC, there was no significant 

difference from the results obtained with the boundary conditions set 

to “Wall” for the side parts, referred to as the side walls. Therefore, for 

convenience of calculation, the velocity inlet boundary conditions, 

assuming far-field boundary conditions, were used. 

3. Comparison of Experimental and Numerical Results

3.1 Comparison of Resistance Test Results

Fig. 6 shows the experimental and CFD analysis results obtained for 

the resistance at different velocities. Here, the vertical axis indicates 

the resistance coefficient ( ′ ), which is a dimensionless value of the 

measured resistance of 0.5   (where : fluid density, : length of 

the Manta-type UUV, and : fluid velocity). 

Fig. 6 Comparison of results obtained for resistance acting on 

Manta-type UUV at different velocities

First, the calculation results obtained for Star-CCM+ indicated 

smaller resistance values than those indicated by the model test results, 

while those obtained for OpenFOAM had larger values, except for 0.6 

m/s. This suggests that the  SST turbulence model of OpenFOAM 

used in this study tends to be estimated with a smaller force as the velocity 

increases, which needs to be studied further. Considering that this study 

aims to show the usefulness of CFD analysis in the motion of underwater 

vehicles, rather than its advancement, the obtained result is reliable. 

3.2 Comparison of Static Drift Test Analysis

As described above, the CFD solver mainly used in this study was 

Star-CCM+ and a numerical analysis was performed using 

OpenFOAM under the calculation conditions listed in Table 7. For 

reference, all CFD results presented in 3.2.1–3.2.3 were analyzed prior 

to performing the model test, which was used as a reference to verify 

the CFD analysis results.

In addition, the force and moment were non-dimensionalized as 0.5

   and 0.5  , respectively, to review the results.

Table 7 Static drift test and CFD calculation conditions

Velocity Experiment
CFD

(Star-CCM+)
CFD

(OpenFOAM)

(m/s) (°) (°) (°)

0.32
±0, 3, 6, 9, 
12, 15, 20

±0, 3, 9, 
15, 20

N/A

0.4
±0, 5, 10, 

15, 20
±0, 5, 10, 

15, 20
±0, 5, 10

3.2.1 Surge force

Figs. 7 and 8 show the dimensionless results obtained for the model 

test and CFD calculation for the surge force (force acting on the model 

vehicle in the straight direction) according to the change in the drift 

angle of the Manta-type UUV at 0.32 and 0.4 m/s velocities, 

respectively. These velocities result from the curve fitting conducted 

using the least-squares method and Eq. (1). The relevant hydrodynamic 

derivatives obtained from the results are shown in Tables 8 and 9.

 As shown in Fig. 8, the surge force was temporarily reduced at a 

drift angle of –5° in the model test, whereas such phenomenon was not 

observed in CFD. It is believed that the flow at the small negative drift 

angle affected the overall surge force due to the change in the surge 

force acting on the vertical wing of the underwater vehicle. This 

change may have been detected in the model test, but not in the CFD.

This is considered to be a limitation of the CFD analysis conducted 

using the RANS equation, and for the purpose of this study, the 

analysis for a more specific cause identification has not been 

conducted. Overall, in Fig. 8, the experimental and CFD results tend to 

be similar, except at the drift angle of –5°, as described above.

 ′   ′′  ′′′  ′′ (1)

A detailed analysis of Figs. 7 and 8 shows that as the drift angle 

increases in the positive (+) direction, the surge force decreases; in 

Fig. 7 Comparison of surge force acting on Manta-type UUV between 

the experiment and CFD calculation at  = 0.32 m/s 
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Table 8 Comparison of hydrodynamic derivatives obtained from 

the surge force acting on Manta-type UUV between the 

experiment and CFD calculation at  = 0.32 m/s

Hydrodynamic

derivatives
Experiment CFD (Star-CCM+)

′ –0.0101 –0.0096

′ 0.0204 0.0299

′ 0.0305 0.0394

Fig. 8 Comparison of surge force acting on Manta-type UUV between 

the experiment and CFD calculation at  = 0.4 m/s 

Table 9 Comparison of hydrodynamic derivatives obtained from 

the surge force acting on Manta-type UUV between the 

experiment and CFD calculation at  = 0.4 m/s

Hydrodynamic
derivatives

Experiment
CFD

(Star-CCM+)
CFD

(OpenFOAM)

 ′ –0.0097 –0.0093 –0.0101

′ 0.0211 0.0273 0.0250

′ 0.0319 0.0478 0.0157

contrast, when it increases in the negative (–) direction, the surge force 

increases and then decreases. 

An analysis of the maneuvering hydrodynamic derivatives, obtained 

from the experimental and CFD calculation results listed in Tables 8 

and 9, indicates that although the hydrodynamic derivatives obtained 

from the Star-CCM+ calculation results slightly differ from those 

obtained from the experimental results, they are still quite similar. This 

indicates that there are some quantitative differences because the 

physical quantity of the surge force itself has a small value, but they are 

in good agreement when viewed qualitatively. As the maneuvering 

hydrodynamic derivatives obtained from the OpenFOAM results listed 

in Table 9 are calculated only under some conditions, the result for 

′ is significantly different from the experimental and Star-CCM+ 

results, but those for  ′ and ′ are similar, indicating that the 

results are in good agreement.

An the analysis of the tendency of the surge force according to the 

drift angle, conducted only using the model test results, indicated that 

when the drift angle increased in the positive direction in Fig. 10(b), a 

counter-current was generated in the back due to the sharply bent shape 

of part ③ and a force in the opposite direction to the surge force was 

applied. Similarly, when the drift angle increased in the negative 

direction, the force in the opposite direction to the surge force acted at a 

diagonal angle as separation occurred near the vertical wing of part ④.

     

(a) Coordinate system (b) Model features

Fig. 10 Coordinate system of static drift test and UUV model 

features

 

Fig. 11 Components of Manta-type UUV

Table 10 Comparison of static drift test surge force acting on 

Manta-type UUV’s each component at  = 0.32 m/s

Component  (N) ( = 20°)  (N) (Ψ = –20°)

Hull 0.780 –0.783

Left wing –0.050 –0.041

Right wing –0.048 –0.029

Vertical wing –0.114 –0.118

Total 0.568 –0.973
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(a) Top view in CFD ( = 0.32 m/s,  = 20°)

(b) Top view in CFD ( = 0.32 m/s,  = -20°)

Fig. 12 Flow field of  = 20° & -20° in CFD

To understand the exact trend when calculating using CFD, the 

Manta-type UUV was divided into the hull and wing parts, as shown in 

Fig. 11, to examine the hydrodynamic forces acting on each part. Table 

10 shows the numerical values for the calculation results obtained at 

drift angles of +20° and –20°. Fig. 12 shows the flow field around the 

hull at drift angles of +20° and –20°, where the colors of the object 

surface indicate the pressure distribution acting on the hull. As shown 

in Table 10, the surge force (force acting in the straight direction) 

acting on the horizontal wings (left and right wings) and vertical wing 

is similar regardless of the drift angle. However, the surge force (force 

acting in the straight direction) acting on the hull shows a significant 

difference. At +20°, a faster flow apparently occurs at the bow side, 

and a force, such as thrust, is generated through the pressure difference, 

as shown in Fig. 12(a); at –20°, the opposite phenomenon occurs, 

increasing the resistance as shown in Fig. 12(b). However, as shown in 

the comparison of the two flow field plots in Fig. 12, because a more 

complex flow phenomenon occurs and the force in the opposite 

direction of the surge force acts on the UUV due the counter-current at 

a drift angle of –20°, the resistance tends to decrease when the drift 

angle increases in the negative direction.

Due to the limitations of the experimental facility, the experiment was 

conducted with the horizontal wings of the UUV placed near the free 

surface and bottom, and the CFD calculation was conducted in the same 

computational domain as that of the experiment. Table 10 shows almost 

the same results for the surge forces acting on the left wing close to the 

free water surface and the right wing close to the bottom, indicating that 

the effect of the free surface on the UUV is rather insufficient.

3.2.2 Heave force

Figs. 13 and 14 show the dimensionless results of the model test and 

CFD calculation for the heave force (force acting on the model vehicle 

in the transverse direction) according to the change in the drift angle of 

the Manta-type UUV at velocities of 0.32 and 0.4 m/s, respectively. 

These velocities are the curve fitting results obtained using the least- 

squares method and Eq. (2). The relevant maneuvering hydrodynamic 

derivatives obtained from the results are shown in Tables 11 and 12.

 ′   ′′  ′′′  ′′  ′′ (2)

Fig. 13 Comparison of heave force acting on Manta-type UUV at 

 = 0.32 m/s

Table 11 Comparison of hydrodynamic derivatives obtained from 

the heave force acting on Manta-type UUV between the 

experiment and CFD calculation at  = 0.32 m/s

Hydrodynamic
derivatives

Experiment CFD (Star-CCM+)

 ′ 0.0430 0.0584

′ 0.5417 0.7542

′ 0.3509 0.4110

′ 1.8038 1.9965

Fig. 14 Comparison of heave force acting on Manta-type UUV between 

the experiment and CFD calculation at  = 0.4 m/s
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Table 12 Comparison of hydrodynamic derivatives obtained from 

heave force acting on Manta-type UUV between the 

experiment and CFD calculation at  = 0.4 m/s

Hydrodynamic
derivatives

Experiment
CFD

(Star-CCM+)
CFD

(OpenFOAM)

′ 0.0481 0.0590 0.0667

′ 0.6429 0.7064 0.6931

′ 0.4251 0.4899 0.1893

′ 2.3354 2.7201 2.9859

As shown in Figs. 13 and 14, the heave force occurred at a drift angle 

of 0°, and was not symmetrical with respect to the positive and 

negative directions of the drift angle. This is attributable to, based on 

the model test results alone, the lift caused by the top–bottom 

asymmetry of the hull of the model vehicle, as shown in Fig. 10(b).

Analyzing the maneuvering hydrodynamic derivatives obtained 

from the experimental and CFD calculation results shown in Tables 11 

and 12, although the hydrodynamic derivatives obtained from the 

Star-CCM+ calculation results slightly differed from those obtained 

from the experimental results, they are still quite similar, as in the case 

of the maneuvering hydrodynamic derivatives obtained for the surge 

force. Similarly, as the maneuvering hydrodynamic derivatives from 

the OpenFOAM results shown in Table 12 were calculated only under 

some conditions, the result for ′ was different from the 

experimental and Star-CCM+ results, while those for the other 

hydrodynamic derivatives agreed well. 

For a detailed examination of the result of the heave force according 

to the drift angle, as shown in Fig. 11, the vertical force acting on each 

part of the vehicle was calculated as for the surge force. Table 13 shows 

the numerical values for the calculation results at drift angles of +20° 

and –20°. According to the calculation results, disregarding the sign due 

to the difference in direction, such as the positive or negative direction 

(that is, analyzing the absolute value of the acting hydrodynamic force), 

heave forces of similar size acted on the horizontal wings and the hull. 

However, this result is different from the abovementioned statement 

that the left–right asymmetry of the heave force generated at a drift 

angle of 0° results from the lift generated by the top–bottom asymmetry 

of the hull. In other words, the lift caused by the top–bottom asymmetry 

of the hull is judged to be the cause of the left–right asymmetry, based 

on the model test results shown in Figs. 13 and 14. However, the CFD 

calculation suggests that the direction of the force acting on the vertical 

Table 13 Comparison of static drift test heave force acting on 

Manta-type UUV’s each component at  = 0.32 m/s

Component  (N) ( = 20°)  (N) ( = –20°)

Hull –21.490 20.597

Left wing –0.966 1.646

Right wing –1.041 1.748

Vertical wing –6.617 6.647

Total –16.880 30.616

wing plays a greater role than the top–bottom asymmetry of the hull, 

regardless of the direction of the drift angle.

3.2.3 Pitch moment

Finally, Figs. 15 and 16 show that the pitch moment has an 

asymmetrical curve as the heave force forms an asymmetrical curve 

according the drift angle.

Similar to the cases of the surge and heave forces, the dimensionless 

results of the model test and CFD calculation for the pitch moment are 

shown, which are the results of curve fitting performed using the 

least-squares method and Eq. (3). The relevant hydrodynamic 

derivatives obtained from the results are shown in Tables 14 and 15.

While the results of the calculated hydrodynamic derivatives show a 

similar tendency to those of the heave force, the result of the third term, 

′, shows a huge difference as the value of the pitch moment is 

much smaller than that of the heave force in terms of the size of the 

hydrodynamic force. In addition, as the hydrodynamic derivatives 

obtained from the OpenFOAM results shown in Table 15 are calculated 

only under some conditions, the result for ′ is considerably 

different from the experimental and Star-CCM+ results, while the 

results for other hydrodynamic derivatives are in good agreement.

 ′   ′′  ′′′ ′′  ′′ (3)

Fig. 15 Comparison of pitch moment acting on Manta-type UUV between 

the experiment and CFD calculation at  = 0.32 m/s 

Table 14 Comparison of hydrodynamic derivatives obtained from 

the pitch moment acting on Manta-type UUV between 

the experiment and CFD calculation at  = 0.32 m/s

Hydrodynamic
derivatives

Experiment CFD (Star-CCM+)

′ 0.0040 0.0051

′ 0.0265 0.0404

′ 0.0244 0.0331

′ 0.0837 0.1813
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Fig. 16 Comparison of pitch moment acting on Manta-type UUV between 

the experiment and CFD calculation at  = 0.4 m/s

Table 15 Comparison of hydrodynamic derivatives obtained from 

the pitch moment acting on Manta-type UUV between 

the experiment and CFD calculation at  = 0.4 m/s

Hydrodynamic
derivatives

Experiment
CFD

(Star-CCM+)
CFD

(OpenFOAM)

 ′ 0.0046 0.0051 0.0055

′ 0.0333 0.0387 0.0250

′ 0.0307 0.0326 0.0091

′ 0.0857 0.2028 0.5421

4. Conclusion

The results of this study—conducted to determine the hydrodynamic 

forces, such as the surge force, heave force, and pitch moment, which 

act on a Manta-type UUV in longitudinal motion through model testing 

and CFD analysis—are described as follows. 

(1) The model test and CFD results showed a similar tendency for 

resistance by velocity. 

(2) In the static drift test, as a result of obtaining the hydrodynamic 

forces from each part of the Manta-type UUV model in CFD, the surge 

force acting on the hull, excluding the wings, changed depending on 

the direction of the drift angle, showing an asymmetric tendency. In 

addition, for the heave force and pitch moment, the same heave force 

acted on the vertical wing regardless of the direction of the drift angle, 

and the heave force and pitch moment occurred at a drift angle of 0°. 

(3) The model test and CFD analysis were conducted simultaneously, 

and the study was conducted without knowing the results. As shown in 

the results, the differences between the results obtained by different CFD 

solvers were rather insignificant and mutually reliable. 

As mentioned in the Introduction, this study provides a good 

example for the usefulness of CFD in predicting the maneuvering 

performance in the initial stage of designing underwater vehicles. 

Nevertheless, as the model test and CFD analysis results showed a 

slight difference at a diagonal angle under certain conditions, further 

study is required to increase the accuracy of the CRD analysis. 

However, using CFD in combination with model testing would be 

beneficial in identifying the trends in hydrodynamic forces, which are 

difficult to be judged through model testing alone.
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1. Introduction

Fossil fuel use is steadily increasing due to global energy 

consumption and economic development. Owing to the depletion of 

fossil fuels, studies on the development of marine energy resources are 

being actively conducted (Lee et al., 2013). Accordingly, various 

marine structures such as wind farms and wave power structures as 

well as traditional spar or semi-submersible structures have been 

developed. In recent years, the installation and operation of offshore 

structures in coastal waters as well as in deep sea and polar conditions 

have increased. Therefore, studies are being conducted to understand 

the structural safety and motion performance of marine structures 

under environmental loads such as extreme waves and winds. Typical 

research topics include the wave run-up or air-gap due to design wave 

height, and model tests and numerical analysis techniques are being 

developed to understand such phenomena (Song and Park, 2017).

Studies on the estimation of wave run-up based on the potential flow 

theory have been conducted. McCamy and Fuchs (1954) calculated the 

wave run-up of a bottom fixed single cylinder based on the linear 

potential theory. Kriebel (1992) conducted a model experiment on a 

bottom fixed cylinder and confirmed that the wave run-up calculated 

based on the linear potential theory was lower than the measurement 

taken in an actual model experiment. Yang and Ertekin (1992) 

employed a second-order Stokes wave and solitary wave to calculate 

the external force and wave run-up applied to a cylinder. Lee et al. 

(2013) estimated wave run-up based on the linear wave theory and 

compared it to that measured in a model experiment with a two- 

dimensional wave tank. Li and Liu (2019) proposed an analytical 

solution by calculating the external force and moment for a 

surface-piercing cylinder, bottom fixed cylinder, and fully submerged 

floating cylinder based on the multi-term Galerkin method, and 

compared the results with the numerical analysis results based on the 

high-order boundary element method (HOBEM). Oh et al. (2019) 

conducted a similar study based on the potential flow theory in which 

they analyzed the hydrodynamic behavior of the body through 

frequency domain analysis. In addition, a number of numerical studies 

have been conducted using a three-dimensional numerical wave tank 

(NWT) based on the potential flow theory. In the three-dimensional 

NWT, the physical wave tank experiments are numerically simulated 

through techniques such as the boundary element or finite element 

Journal of Ocean Engineering and Technology 34(4), 245-252 August, 2020
https://doi.org/10.26748/KSOE.2020.026

pISSN 1225-0767
eISSN 2287-6715

Original Research Article

Numerical Study on Wave Run-up of a Circular Cylinder with 

Various Diffraction Parameters and Body Drafts

Ho-Jin Jeong 1, Weoncheol Koo 2 and Sung-Jae Kim 1,3

1Researcher, Department of Naval Architecture and Ocean Engineering, Inha University, Incheon, Korea
2Professor, Department of Naval Architecture and Ocean Engineering, Inha University, Incheon, Korea

3Visiting scholar, Department of Ocean Engineering, Texas A&M University, College Station, Texas, USA

KEY WORDS: Wave run-up, Numerical wave tank, Circular cylinder, Diffraction parameter

ABSTRACT: Wave run-up is an important phenomenon that should be considered in ocean structure design. In this study, the wave run-up of a 
surface-piercing circular cylinder was calculated in the time domain using the three-dimensional linear and fully nonlinear numerical wave tank (NWT) 
techniques. The NWT was based on the boundary element method and the mixed Eulerian and Lagrangian method. Stokes second-order waves were 
applied to evaluate the effect of the nonlinear waves on wave run-up, and an artificial damping zone was adopted to reduce the amount of reflected 
and re-reflected waves from the sidewall of the NWT. Parametric studies were conducted to determine the effect of wavelength, wave steepness, and 
the draft of the cylinder on the wave run-up of the cylinder. The maximum wave run-up value occurred at 0°, which was in front of the cylinder, 
and the minimum value occurred near the circumferential angle of 135°. As the diffraction parameter increased, the wave run-up increased up to 1.7 
times the wave height. Furthermore, the wave run-up was 4% higher than the linear wave when the wave steepness was 1/35. In particular, the crest 
height of the wave run-up increased by 8%. 

Received 8 May 2020, revised 24 June 2020, accepted 25 June 2020

Corresponding author Weoncheol Koo: +82-32-860-7348, wckoo@inha.ac.kr

ⓒ 2020, The Korean Society of Ocean Engineers
This is an open access article distributed under the terms of the creative commons attribution non-commercial license (http://creativecommons.org/licenses/by-nc/4.0) which permits 

unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

245

https://orcid.org/0000-0001-5728-0099
https://orcid.org/0000-0002-4384-0996
https://orcid.org/0000-0001-9582-8983


246 Ho-Jin Jeong, Weoncheol Koo and Sung-Jae Kim

methods, which is an analysis technique for nonlinear wave analysis 

and nonlinear motion analysis. Koo and Kim (2004), Oh et al. (2018), 

and Wu and Eatock Taylor (1995) have conducted analyses using a 

two-dimensional nonlinear NWT. In particular, Wu and Eatock Taylor 

(1995) analyzed the radiation problem with a circular cylinder using 

the boundary element method and finite element method for a 

two-dimensional nonlinear NWT. Boo and Kim (1996) solved the 

diffraction problem using HOBEM for a three-dimensional NWT, and 

Celebi et al. (1998) analyzed nonlinear environmental loads and wave 

run-ups of a bottom fixed cylindrical structure and moored floating 

cylinder in a three-dimensional nonlinear NWT. Bai and Eatock 

Taylor (2007) solved the diffraction problem of single and 

concentrated waves by a floating cylinder using the decomposition 

method for a three-dimensional NWT. Kim and Koo (2019) developed 

a three-dimensional fully nonlinear potential NWT based on the 

constant panel method to solve the diffraction, radiation, and vertical 

motion problems for a wave energy converter.

Various other studies on wave run-up have been conducted. For 

instance, Li et al. (2012) studied wave run-up between a multi- 

directional focused wave and cylinder, and Kim et al. (2014) performed 

numerical analyses of the frequency domain based on the potential 

flow theory for experiments and a comparison of the characteristics of 

nonlinear wave run-up around the column of semi-submersible marine 

structures. In the experiment conducted under light draft and short 

period conditions, strong nonlinearity was observed at the front of the 

column, and based on this, it was necessary to consider the nonlinear 

wave run-up characteristics for semi- submersible marine structures. 

Recently, with the development of computational fluid dynamics 

(CFD), many studies have been conducted on wave run-up and wave 

load. Moon et al. (2018), Liu and Wan (2017), Song and Park (2017), 

and Fan et al. (2019) conducted a study on the wave run-up of vertical 

circular cylinders using OpenFOAM. In particular, Fan et al. (2019) 

studied the effects of wave steepness, relative size of an object, and 

change in water depth on wave run-up, and confirmed that the size of 

the wave run-up was significantly influenced by the wave steepness 

and relative size of the object.

In this study, a wave run-up phenomenon that acts on a cylinder 

having a circular cross section, which is a typical shape for a marine 

structure column, was studied using a three dimensional NWT. To this 

end, the three-dimensional fully nonlinear potential NWT technique 

developed by Kim and Koo (2019) was used. This technique is an 

analysis program based on the boundary element and Mixed Eulerian–
Lagrangian (MEL) methods, and it is a suitable analysis program for 

nonlinear wave and wave-floating body interaction analysis. Based on 

this analysis technique, the wave run-ups were compared at all 

circumferential angles of the circular cylinder to compare the locations 

where the maximum and minimum values were formed. In addition, 

the effect of the diameter () and draft () of the cylinder at various 

wavelengths on the wave run-up was studied by analyzing the incident 

waves of various periods. The effect of wave nonlinearity on the wave 

run-up at various wave steepness values was studied by comparing 

changes in the wave run-up under various wave steepness conditions.

2. Problem Formulation

In order to calculate the wave run-up occurring on the cylinder 

surface, it is assumed that the computational domain is a non-viscous, 

incompressible, non-rotating potential fluid. Based on this, the 

velocity potential() is introduced, and the governing equation 

becomes the Laplace equation as in Eq. (1).

To calculate the wave run-up occurring on the surface of a cylinder, 

it is assumed that the fluid in the computational domain is a 

non-viscous, incompressible, and non-rotating potential fluid. 

Therefore, when the velocity potential () is introduced, the governing 

equation becomes the Laplace equation, which is shown below:

∇ (1)

In addition, the Laplace equation can be converted to a boundary 

integral equation by Green's second identity:









 (2)

where  denotes a three-dimensional angle, and  denotes the kernel 

function. The three-dimensional basic Rankine source expression in 

3D is  , where  denotes the distance between the source and field 

points (Kim and Koo, 2019). 

Free surface boundary conditions can be divided into kinematic and 

dynamic conditions, and the linear free surface boundary conditions 

can be expressed by Eqs. (3)–(4).







(3)




 (4)

The semi-Lagrangian approach (   ) is applied to the 

nonlinear free surface boundary conditions, which can be expressed by 

Eqs. (5)–(6), to consider the effects of nonlinear waves.



















(5)




 


∇ 





(6)

where  denotes the displacement of the free surface. As the boundary 

condition of the incident wave, a progressive wave is generated by 

substituting the incident wave component in the left end of the 

computational domain. The linear wave is applied as the incident wave 

for linear analysis, and the second-order Stokes wave is applied in the
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Fig. 1 Overview of computational domain

nonlinear analysis. Eq. (7) shows the boundary condition of the 

incident wave according to the second-order Stokes wave that is 

applied in the analysis of the nonlinear wave. In the case where the 

incident wave is linear, only the first term of Eq. (7) was applied for 

the boundary condition.










cosh
cosh



 


sinh 

cosh


(7)

where  denotes the gravitational acceleration,  denotes the 

amplitude of the incident wave,  denotes the wave number, and  

denotes the wave frequency.

In addition, the boundary surface of the circular cylinder and side 

wall surface of the numerical wave tank are applied as a rigid interface 

( ), and the bottom surface is expressed using the image 

method. Fig. 1 shows the overall computational domain used to 

determine wave run-up around the cylinder. To create an open sea 

condition while eliminating the unnecessary reflected waves that may 

be generated on the free surface, an artificial damping zone is applied 

in the frontal, side, and end damping zones, and the length of each 

damping zone is set to one wavelength (1). Moreover, the analysis 

domain is represented by x-axis symmetry to shorten the analysis time 

by reducing the number of computational elements. The least square 

technique is employed for reconstructing the gradient for spatial 

differentiation, and the inverse distance weighting (IDW) method is 

employed for interpolation of the nodes. Further details can be found 

in Kim and Koo (2019).

3. Numerical Analysis Model and Results

3.1 Numerical Analysis Model and Analysis Conditions

In this study, numerical analysis was performed on a surface- 

piercing cylinder protruding from a free surface. Fig. 1 shows an 

overview of the computational domain. Fig. 2 shows the positions of 

the wave gauges for measuring the wave run-up on the free surface. 

Each wave gauge was placed at an interval of 22.5°. Table 1 shows the 

dimensions and specifications of the numerical analysis models. As 

shown in Table 1, the analysis was performed by increasing the draft 

() from 1.5 m to 9 m while maintaining the diameter () at 3 m. Fig. 

3 shows the appearance of the panel (mesh) in the numerical analysis 

model. The number of elements in the numerical analysis model is 250 

Fig. 2 Top view of the computational domain

Fig. 3 Meshes of the circular vertical cylinder

Table 1 Principal dimensions of the cylinder models

Model 1 Model 2 Model 3 Model 4 Model 5

Diameter,  (m) 3 3 3 3 3

draft,  (m) 1.5 3 4.5 6 9

 0.5 1.0 1.5 2.0 3.0

Table 2 Incident wave conditions

Method
Case 
No.

Wave 
period, 
 (s)

Wave 
length, 

(m)


Wave 
height, 
H (m)

Linear 
simulation

1 2.1 6.88 0.4360

0.3

2 2.3 8.26 0.3634

3 2.5 11.38 0.3075

4 2.7 13.13 0.2636

5 2.9 15.97 0.2286

6 3.2 20.22 0.1879

7 3.6 24.95 0.1483

8 4.0 27.47 0.1203

Nonlinear 
simulation

9

2.3 8.26 0.3634

0.055

10 0.083

11 0.165

12 0.206

13 0.236

at  = 1.5 m; 350 at = 3 m; 450 at  = 4.5 m; 550 at  = 6 m; and 750 

at  = 9 m. Table 2 shows the 13 incident wave conditions that were 

calculated for linear and nonlinear analyses. First, the effect of the 

diffraction parameter was examined by changing  from a 
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minimum of 0.1203 to a maximum of 0.4360, and analysis was 

performed with varying wave steepness from 0.006 to 0.03 under the 

condition of a specific diffraction parameter. The water depth was 

fixed at 15 m.

3.2 Wave Run-up Analysis Using a Three-dimensional Linear 

NWT

To verify the wave run-up of the NWT, wave run-ups at various 

angles of the cylinder were compared with the numerical analysis 

results of Lee et al. (2013), as shown in Fig. 4. The specifications of the 

numerical analysis model were  = 16 m,  = 24 m, and  = 60 m. The 

incident wave height was fixed at 0.3 m, and the wave run-up height 

() was calculated by averaging time series results in which the steady 

state lasted for five cycles after the incident wave reached the cylinder. 

Fig. 4 shows that the results of the numerical analysis of this study 

agree well the results of Lee et al. (2013) for all circumferential angles. 

Based on the developed NWT, the effects of the diffraction 

parameter () and cylinder draft () on the wave run-up were 

determined. Fig. 5 shows a comparison of the wave run-ups for various 

diffraction parameters and the representative circumferential angles, 

which were set to 0°, where wave run-up was at its maximum as shown 

in Fig. 4; 135°, where wave run-up was at its minimum; and 90°, 

which was the central point of the cylinder. The draft and the diameter 

of the cylinder were set to 3 m each. As the diffraction parameter 

increased, wave run-up decreased when the circumferential angle was 

135°, but it gradually increased at 0° and 90°. In particular, at 0°, 

where the wave run-up reached its maximum value, it converged to 

approximately 1.7 times the incident wave height as the diffraction 

parameter increased. An increased diffraction parameter indicates that 

the incident wavelength is relatively small compared to the cylinder 

diameter, and a considerable portion of the incident wave is reflected 

from the front of the cylinder. If total reflection occurs, such as under 

completely blocked conditions, which could be achieved with a sea 

wall, a standing wave is generated, and the maximum wave run-up that 

can be measured is twice the incident wave height.

This study confirmed that wave-run up was at maximum at 

Fig. 4 Comparison of the wave run-up obtained in the present study 

and that obtained by Lee et al. (2013) ( = 7.0 s,  = 60 m)

Fig. 5 Comparison of wave run-ups for various diffraction parameters 

and measurement points ( = 3 m,  = 3 m)

Fig. 6 Wave run-up at all circumferential angles for various  

( = 3 m,  = 15 m)

approximately 1.7 times the incident wave height owing to the shape 

characteristics of the circular cylinder. If this analysis is applied to an 

actual design, it can be expected that the free-board of a structure 

should be at least 1.7 times the incident wave height under the head sea 

condition, where the incident wave enters (circular angle 0°), to secure 

the air gap without affecting the topside of a fixed structure. Fig. 6 

compares the wave run-up for various angular and diffraction 

conditions. As the diffraction parameter decreases, the difference in 

wave run-up decreases, and  gradually approaches 1. This is 

considered to be due to the decreased diffraction effect of the incident 

wave caused by the cylinder as the diffraction parameter falls below 

0.2. Conversely, as the diffraction parameter increases, the difference 

in wave run-up according to the circumferential angle increases. In 

particular, when the diffraction parameter is the highest at 0.3634, 

wave run-up of approximately 1.6 times the wave height occurs around 

the circumferential angle of 0° to 50°. At a circumferential angle of 90° 

or greater, the wave run-up is generally reduced, and only 

approximately 0.6 times the incident wave height at 135°.

Fig. 7 compares the wave run-up at measurement point (a) with a 

circumferential angle of 0° and measurement point (b) with a 

circumferential angle of 135° for cylinders with various draft 

conditions, where the maximum and minimum wave run-ups occur, 

respectively. As shown in Fig. 7(a), as the draft of the circular cylinder 
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increases, the wave run-up at the measurement point where the 

circumferential angle was 0° generally increases. However, this trend 

decreases as the draft increases, and as the diffraction parameter 

increases, the increase decreases. When the diffraction parameter is 

small ( 0.2), the maximum wave run-up difference according to 

the draft is approximately 26%, and when the diffraction parameter is 

large ( 0.25), the maximum difference is approximately 7.4%. 

When the draft is small compared to the cylinder diameter (0.5 times), 

the wave run-up is considerably smaller than under other cylinder 

conditions with a small diffraction parameter. It appears that the 

incident wave does not affect the cylinder owing to the low draft, and 

most of it passes through. As shown in Fig. 5, the wave run-up 

increases and converges to 1.7 as the diffraction parameter increases. 

Based on this, it can be confirmed that the free-board of the cylindrical 

structure should be at least 1.7 times the incident wave height 

regardless of the cylinder draft. 

Fig. 7(b) shows the variation in the wave run-up with the ratio of the 

draft and diameter of the cylinder at the circumferential angle of 135°, 

where the wave-run up is at its lowest. The wave run-up decreases 

under all draft conditions as the diffraction parameter increases. 

Furthermore, when the draft is greater than or equal to the cylinder 

(a) Cylinder circumferential angle = 0°

(b) Cylinder circumferential angle = 135°

Fig. 7 Wave run-up under various  conditions for two different 

circumferential angles (a: angle = 0°and b: angle = 135°)

(a) Horizontal force

(b) Vertical force

Fig. 8 Comparison of (a) horizontal forces and (b) vertical forces 

under various draft conditions

diameter (≥), a similar wave run-up is generated irrespective of 

the value of the draft.

Fig. 8 compares the horizontal and vertical forces of a circular 

cylinder under various draft conditions. All vertical forces were 

nondimensionalized with , where  denotes the 

amplitude of the incident wave. As the cylinder draft increases and the 

diffraction parameter decreases, the horizontal force generally 

increases, which is due to the relatively long wavelength of the 

incident wave increasing the area where the wave energy acts on the 

cylinder. This relationship between the wavelength and cylinder draft 

can be observed more prominently by comparing the horizontal force 

when the diffraction parameter is large. When the diffraction 

parameter increases, the incident wavelength becomes relatively 

small, and its effect on the lower surface of the water plane of the 

circular cylinder is reduced. Because of this, the horizontal force 

remains almost similar for a deep draft cylinder. In Fig. 8(b), it can be 

seen that the vertical forces decrease unlike the horizontal forces. The 

vertical force decreases as the diffraction parameter increases, that is, 
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as the wavelength is relatively reduced. This is because the effect of 

the wave on the bottom surface of the cylinder, based on which the 

vertical force is calculated, is reduced. 

3.3 Wave Run-up Analysis Using a Full Nonlinear NWT

The variation in the wave run-up of the cylinder because of the 

nonlinear effect of the incident wave was investigated using a full 

nonlinear NWT. Unlike linear NWT, which uses linear free surface 

conditions and incident wave conditions that do not show the 

variations in the wave run-up due to variations in the wave height, the 

nonlinear analysis using the nonlinear free water surface boundary 

conditions can reveal the effect of wave steepness on wave run-up. 

Fig. 9 compares the time series data of the wave run-up for the linear 

and nonlinear analyses for two wave steepness conditions. The wave 

steepness () values were selected as 1/150 and 1/35 for the linear 

and relatively large nonlinear effects, respectively. All results used 

were from the period when  was between 6 and 11, during which 

the time series data reached a steady state. When the wave steepness of 

a typical nonlinear wave (Stokes wave) condition (1/35) is applied, the 

crest height of the wave run-up increases by 8% and the trough height 

decreases by 6% compared to the linear analysis results. When the 

wave steepness is 1/150, it is almost identical to the time series 

obtained by the linear NWT, which confirms that the nonlinear effect 

occurs as the wave steepness increases. 

Fig. 10(a) and 10(b) show snapshots of the free water surface area 

around the cylinder of the NWT for the maximum and minimum 

diffraction parameters of 0.3634 and 0.1203, respectively, for a wave 

steepness of 1/35. Fig. 10(a) shows a more pronounced wave run-up. 

Moreover, this visually confirms that the wave run-up is small in 

general when the cylinder circumferential angle is 90° or greater.

Figs. 11(a) and 11(b) show the variations in the wave run-up with 

changes in the draft and wave steepness () of each cylinder at a 

Fig. 9 Time histories of the wave run-up for different wave steepness 

values ( = 1.0,  , and angle = 0°)

(a)  

(b)  

Fig. 10 Snapshot results of numerical wave tank calculations for two different diffraction parameters ( = 9.0 m,  )
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(a) Circumferential angle = 0°

(b) Circumferential angle = 135°

Fig. 11 Wave run-ups for various wave steepness values: (a) Angle 

= 0°; (b) Angle = 135°

Table 3 Frequency components of the wave run-up ( =3.0, 

Angle = 0°,   ) 




= 1/35 = 1/150

0 0.08336 0.01885

1 1.673 1.672

2 0.02712 0.006119

3 0.003543 0.000687

cylinder circumferential angle of 0°, where the wave run-up is at its 

maximum in the linear analysis, and 135°, where the wave run-up is at 

its minimum. The diffraction parameter () was fixed at 0.3634. 

The wave run-up increases as the wave steepness increases in all 

cylinders irrespective of the cylinder draft. For 0°, the relative increase 

rate of the wave run-up increases when the wave steepness is 0.02 or 

more. As the linear and nonlinear waves are usually demarcated at the 

wave steepness of 0.02, it can be understood that a larger crest height 

occurs in the nonlinear wave section, resulting in a greater wave 

run-up. At 135°, the measuring point with the minimum wave run-up, 

a relatively high wave run-up occurs when the ratio of the draft and 

diameter is the smallest ( = 0.5). As the light draft allows the 

incident wave to easily pass through the lower part of the cylinder, a 

relatively small wave run-up occurs at 0° (Fig. 7 (a)), and a relatively 

large run-up occurs at 135°.

To clearly determine the effect of the ratio of the cylinder draft to the 

radius on changes in wave run-up, the wave run-ups for  of 3.0 

measured at 0° for the maximum wave steepness of 1/35 and minimum 

wave steepness of 1/150 were separated for each frequency component 

(Fast Fourier Transform applied), as shown in Table 3. A comparison 

of the frequency components for various wave steepness values 

reveals that the primary wave frequency components of the wave 

run-up remain the same as the wave run-up values irrespective of the 

wave steepness. As the wave steepness increases, the mean value and 

double frequency components of the wave run-up that are proportional 

to the square of the wave amplitude and triple frequency components 

of the wave run-up that are proportional to the cube of the wave 

amplitude increase. The wave run-up increases by 4% when the wave 

steepness is approximately 1/35. In particular, when the wave 

steepness is 1/35, the mean value of the wave run-up (zero order 

frequency components) is 5% of the primary frequency components 

and 3% for the secondary frequency components.

4. Conclusion

In this study, the wave run-up of a circular cylinder was calculated 

in the time domain using three-dimensional linear and fully nonlinear 

NWT techniques. The change in the wave run-up was compared and 

analyzed based on changes in the diffraction parameter (), which 

is the ratio of the diameter of the cylinder to the incident wavelength, 

the circumferential position (angle) of the cylinder, and the change in 

cylinder draft. In addition, the effect of wave nonlinearity on the wave 

run-up under various wave steepness conditions was investigated 

using a nonlinear NWT.

The three-dimensional NWTs used linear and nonlinear free water 

surface boundary conditions; furthermore, the least square technique 

and IDW method were applied for gradient reconstruction and spatial 

differentiation, respectively.

The wave run-up had a maximum value at 0°, in front of the cylinder 

where the incident wave reached, and a minimum value occurred at 

approximately 135°. The wave run-up gradually increased as the 

diffraction parameter increased, but it converged to approximately 1.7 

times the wave height irrespective of the draft when  was 0.25 or 

greater. Based on this, the free-board of a fixed structure composed of a 

cylindrical lower body should be at least 1.7 times the incident wave height.

The wave run-up, for nonlinear waves with increasing incident wave 

height increased as the wave steepness increased irrespective of the 

cylinder draft. The crest height of the wave run-up increased by as 

much as 8% when the wave steepness was 1/35 compared to when the 

wave steepness of 1/150. At 0°, where the maximum wave run-up was 

achieved, the relative increase rate of the wave run-up increased when 

the wave steepness is 0.02 or greater.
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1. Introduction

The ocean and fisheries industries are expected to become major 

providers of food resources in the future, and the development of these 

enterprises is being strengthened to ensure stable fishery resources 

worldwide. The market size of the ocean and fisheries equipment 

industry, the main supplier underpinning the ocean and fisheries 

industry, is expected to increase from $63.6 billion in 2017 to $89 

billion in 2022, with growth particularly expected to increase in the 

Asia Pacific (Lee et al., 2019). However, the product competitiveness 

and automation rate of Korean ocean and fisheries equipment is very 

low, and the ratio of location to market size is only about half, making 

it considerably reliant on imports.

Salt collectors, a type of ocean and fisheries equipment used to 

collect salt from ocean salt farms, are in urgent need of development 

for automation owing to the poor state of salt farming. As shown in 

Fig. 1, the existing salt collection method in ocean salt farms involves 

manually unloading crystallized salt into a collection bin on a rail to 

transfer the salt. To enhance the safety of ocean salt collection and the 

production per unit of the salt collection and crystallizing pond area, 

the development of locations for electric automatic ocean salt 

collectors (AOSC) has recently begun. However, owing to insufficient 

domestic and foreign design regulations for ocean and fisheries 

equipment, it is necessary to analyze the sensitivity of the design 

characteristics according to structural performance conditions to 

ensure the safety of structural designs of new types of ocean and 

fisheries equipment such as the AOSC while enhancing design 

efficiency to minimize weight.

Researchers have conducted several studies on enhancing the safety 

of ocean equipment designs through sensitivity analysis and optimal 

design techniques. Park et al. (2011) applied an evolutionary algorithm 

to minimize the design weight of the support while satisfying strength 

constraints defined in piping design regulations for pipelines installed 

in floating production storage and offloading (FPSO) flare system. 

Song et al. (2011) explored the best design cases to minimize design 

risk by applying the constraint-feasible moving least squares method, a 

conservative approximate model for the reliability-based design 

optimization of FPSO riser adducts. To investigate the safety design of 

high-pressure quadruple eccentric butterfly valves, Lee and Kim 

(2014) conducted a design parameter analysis and variance analysis of 
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the seating torque response function. Ji et al. (2015) used a genetic 

algorithm to realize an optimal placement design considering the stress 

and dynamic properties of the resilient mount for naval ships. Park et 

al. (2019) used various design of experiments (DOE) techniques to 

explore reasonable design cases to solve the issue of resonance in the 

normal operating range of the main engine of a navigational 

communication radar mast mounted on large merchant vessels. 

To efficiently derive a design improvement case that secures the 

design safety of the AOSC, the present study explored best design 

cases by applying various DOE techniques, conducted a sensitivity 

analysis of major structural members, and compared the results 

according to DOE characteristics. To evaluate the strength 

performance in the AOSC’s initial design state, a structural analysis 

model was generated using the finite element method (FEM). The load 

conditions were calculated considering the AOSC’s actual operating 

conditions and applied to the structural analysis model, and the 

strength performance was assessed for each load condition. To 

improve the initial structural design of the AOSC, the influence of the 

major design members on strength performance was analyzed using 

DOE, and design improvement cases that satisfy the allowable stress 

while minimizing weight increase were explored. To derive a design 

improvement case based on DOE, three DOE techniques—OAD 

(orthogonal array design), BBD (Box–Behnken design), and CCD 

(central composite design)—were implemented to analyze the 

sensitivity results, and the DOE technique most suited for the AOSC’s 

structural design was examined considering the design improvement 

characteristics and numerical calculation cost. To verify the suitability 

of the sensitivity analysis results of major structural members and the 

exploration of DOE-based AOSC improvement cases applied in this 

study, approximate modeling using the response surface method 

(RSM) was conducted for each DOE technique, and the RSM design 

space exploration accuracy generated from each DOE technique was 

examined. Chapter 2 of this study describes the FEM-based strength 

performance evaluation of the AOSC’s initial structural design. 

Chapter 3 briefly reviews the theory of DOE, explores best design 

cases using DOE, conducts a sensitivity evaluation of weight and 

strength performance, and verifies the suitability of the DOE 

techniques using an approximate model. Finally, the study is 

concluded in Chapter 4. 

2. Structural Analysis of the Initial Design

2.1 Calculation of Design Load Conditions

Fig. 2 shows the initial design of the electric AOSC developed to 

(a) collecting (b) loading (c) transfer

Fig. 1 Work process of manual ocean salt collecting production

Fig. 2 Initial design configuration of the AOSC
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Table 1 Principal AOSC dimensions and system specifications

Parameter Particulars

Dimensions

Length 3.4 m

Breadth 3.2 m

Height 2.1 m

System 
specifications

Max. salt collecting capacity 0.7 t

Max. towing capacity 490 N

Operation speed 6 m/min

Brake Belt type

automate the collection of salt in ocean salt farms and enhance ocean 

salt collection safety as well as production per unit of salt collection 

crystallizing pond area.

As shown in Fig. 2, a salt collector part and towing part were 

designed and applied to the AOSC to automate ocean salt collection, 

and a drive and power part for transferring electric driving power and a 

rail frame part for transferring the collected salt were installed. To 

safely support the load generated during operation and mounting of the 

AOSC’s functional components, a collector frame, rail frame, and 

main frame were applied. Table 1 summarizes principal information 

on the AOSC.

In terms of the main design load conditions for reviewing the 

AOSC’s structural safety, considering the harshest operating 

conditions that may arise during salt collection, a maximum loading 

case, braking case, and operating case under the maximum loading 

case were selected. Table 2 summarizes the design load conditions for 

each load case.

As shown in Table 2, the design loads generated in the AOSC for 

each load case were combined to configure the design load conditions. 

In the loading case (LC1), the weight of each functional product was 

applied considering the center of gravity and mounting position. To 

reflect the entire AOSC’s weight, an inertial load was applied 

considering gravity acceleration, and the maximum salt collecting 

Table 2 Design load cases

Design loads

Load cases

Loading 
(LC1)

Operating 
(LC2)

Braking 
(LC3)

Salt collector weight √ √ √

Drive & power part weight √ √ √

Towing part weight √ √ √

Wheel part weight √ √ √

Inertial load √ √ √

Max. salt collecting capacity √ √ √

Max. towing capacity - √ -

Acceleration at operating - √ -

Acceleration at braking - - √

capacity was applied as distribution pressure on the top of the rail 

frame in the center of the AOSC. In the operating case (LC2), along 

with the loading case, the maximum towing capacity and acceleration 

measured through the operation of prototype equipment manufactured 

with the initial design were applied in the transport direction. In the 

braking case (LC3), to consider a sudden braking case along with the 

loading case, driving acceleration was applied in the opposite direction 

of the transport direction. Gravity load was applied for the acceleration 

of LC2 and LC3 so that the gravitational influence of acceleration 

acted on the entire structure.

2.2 FEM-based Structural Analysis

To conduct an FEM-based strength performance evaluation of the 

AOSC's initial structural design, an FEM (Fig. 3) was generated 

considering the main structure (main frame, rail frame, and collector 

frame) and bracket part that can apply the weight and design load of 

the functional products. 

As shown in Fig. 3, the thicknesses of the main frame part, rail 

frame part, collector frame part, and bracket part are 2.5 mm, 1.5–4.0 

Fig. 3 Finite element model of the AOSC



256 Chang Yong Song et al.

mm, 1.5 mm, and 4.0 mm, respectively, which were applied in the 

initial design stage through empirical design. The elements used in the 

FEM consisted of a shell element for the main structure of the main 

frame part, rail frame part, collector frame part, and bracket part, and 

lumped mass elements for the weight of each functional product. Rigid 

links were used for the connection of each structural member and 

application part of the functional weight and design load, and the 

driving direction constraints of the rigid links were defined 

considering the operating mode. Table 3 summarizes the model 

information used in the FEM, and material properties of the austenitic 

stainless steel (SUS304L). The design conditions defined in Table 2 

were applied for the load condition used in the structural analysis and 

for the boundary condition; all degrees of freedom were constrained 

except the rotation direction of the driving direction for each wheel of 

the wheel part.

Abaqus/Implicit (Simulia, 2018), a general-purpose finite element 

analysis program, was used to conduct the structural analysis, and the 

stress and deformation of the major structural parts were calculated for 

each design load condition. Table 4 summarizes the structural analysis 

results of the AOSC’s initial design stage, and Fig. 4 shows the overall 

stress and strain distribution results for the braking case (LC3). 

As shown in Table 4, under all design load cases, the stress values of 

the main frame part and the rail frame part failed to satisfy the 

material’s allowable yield stress. Furthermore, the braking case (LC3) 

showed the harshest results of all design cases. In all design load cases, 

the maximum stress occurred in the main frame part, and as shown in 

Fig. 4, the maximum stress was distributed in the center of the main 

frame part. The maximum stress occurred locally at the upper center of 

the main frame and bracket joint, which is likely because the design 

thickness of the main frame was 2.5 mm in a thin plate, and a gentle 

shape change design was not applied in the bracket joint. Accordingly, 

the structural analysis results of the initial design stage demonstrate 

that design improvements are required to secure the strength and safety 

of the AOSC’s structural design.

Structure part
Max. von-Mises stress [MPa] / Max. deformation [mm]

Safety check Allowable strength [MPa]
LC1 LC2 LC3

Overall structure 260.0 / 17.6 236.6 / 17.5 285.2 / 17.9 NG

85% of material yield 
strength1) : 182.8

Main frame 260.0 / 12.3 236.6 / 12.2 285.2 / 12.5 NG

Rail frame 185.1 / 11.7 180.9 / 11.6 191.8 / 12.0 NG

Collector frame 45.3 / 17.6 66.5 / 17.5 52.2 / 17.9 OK

Bracket 137.2 / 12.7 170.5 / 12.6 154.9 / 12.0 OK
1) Det Norske Veritas and Germanischer Lloyd (DNV-GL) (2015) Rules and Standards CH.2, Sec.1

Fig. 4 LC3 - Overall stress and deformation contours for the initial design

Table 4 Structure analysis results of initial design

Material property Model information

Density Elastic modulus Poisson's ratio Yield strength # of elements # of nodes

8,000 kg/m3 193 GPa 0.29 215 MPa 112,896 114,431

Table 3 FEM model information and material property
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3. DOE-based Structural Design Improvement and 

Sensitivity Evaluation

To improve the initial structural design of the AOSC, the influence 

of the major design members on strength performance was analyzed 

using DOE, and design improvement cases that satisfy the allowable 

stress while minimizing weight gain were explored. To derive a design 

improvement case based on the DOE method, three DOE techniques 

(OAD, BBD, and CCD) were implemented to analyze the sensitivity 

results. The DOE technique most suited for the AOSC’s structural 

design was examined considering the design improvement 

characteristics and numerical calculation cost. Using the three DOE 

techniques considered in this study, considering three levels for the 

design factors, the secondary effects and interaction effects of the 

design factors can be observed. Unlike random DOE techniques, such 

as Latin hypercube design, the number of experiments is automatically 

determined for each DOE method, making it easy to use. However, 

even for the same design problem, the number of experiments and 

methods of filling the experiment space differ according to the DOE 

method, which may result in different design space exploration results. 

Hence, to utilize the DOE results for approximate optimization or 

reliability analysis, it is important to select a DOE technique suitable 

for the design problem. First, the theoretical characteristics of the DOE 

techniques used in this study are briefly summarized, after which each 

DOE technique is used to explore best AOSC structural design cases 

and evaluate the design sensitivity according to strength performance. 

In addition, to verify the suitability of the sensitivity analysis results of 

the major structural members and the exploration of DOE-based 

AOSC improvement cases applied in this study, approximate 

modeling using RSM was conducted for each DOE technique, and the 

RSM design space exploration accuracy generated from each DOE 

technique was examined. 

3.1 DOE Theory

OAD detects the main effects and interactions between factors for 

experiments with a large number of factors and excludes information 

on high-order interaction and interaction between low-influence 

factors, thereby reducing the number of experiments through an OAT. 

The OAT has two, three, four, five, and mixed levels, with two and 

three levels typically used. This study applied OAT with three levels, 

as in the following equation (Park, 2012).





   (1)

where  is an integer of 2 or more,   is the experiment size, and 

  is the number of rows in the OAT.

As shown in Fig. 5, the BBD method has a feature by which corner 

points are not used in the experimental space. This technique is also 

referred to as spherical, rotational, or approximate rotational quadratic 

design (Box and Behnken, 1960). 

Fig. 5 Design experimental space of the BBD method (Kim et al., 2015)

As shown in Fig. 5, BBD uses polyhedral edge center points, 

excluding center points and corner points in the entire experimental 

space, thus allowing economical DOE. BBD is advantageous for 

calculating quadratic regression equations and exploring optimal 

conditions when the factors are quantitative and have three levels. In 

terms of the number of independent variables , BBD can easily 

generate orthogonal blocks with a small number of experimental 

points, through which a quadratic regression equation can be obtained. 

CCD adds center points and axial points to   factor experiments 

and detects the curved change in the amount of responses caused by 

changes in the level of variables (Park, 2012). In CCD, the number of 

center points becomes at least one, and the number of axial points 

becomes . If the number of center points is  , then the number of 

CCD experiments  can be defined by the following equation.

       (2)

As in Eq. (2), in the case of , the DOE method can be 

performed with significantly fewer experiments than factorial design, 

and it is highly advantageous if the experimental cost is high. 

Moreover, rather than performing DOE again when the regression 

model estimation must be changed, CCD can perform sequential 

experiments that add new data points to the center and axis.

3.2 Comparison of Best Design Cases and Structural Design 

Sensitivity According to DOE Characteristics

To conduct the AOSC structural design effect evaluation according 

to the DOE characteristics, the thickness of the main structural 

members was set to three levels of the design factors, and the 

maximum stress and weight for each design load case shown in Tables 

2 and 4 were set as the output response. The upper and lower limits of 

Table 5 Design factors and ranges for the AOSC

Design factors
Lower limit 
value (mm)

Original design 
value (mm)

Upper limit 
value (mm)

DF-#1 1.5 2.5 6.0

DF-#2 2.0 3.0 6.0

DF-#3 3.0 4.0 6.0

DF-#4 1.0 1.5 2.0

DF-#5 3.0 4.0 6.0
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the design factors were set considering the range within which the 

AOSC can be manufactured. Table 5 and Fig. 6 show the configuration 

of AOSC design factors.

The configured design factors and three-level design factor range in 

Table 5 and Fig. 6 were applied. An experimental matrix with 81 runs 

was configured for OAD, 41 runs for BBD, and 43 runs for CCD. 

Tables 6–8 show the results of the response functions calculated via 

finite element analysis according to changes in design factors in the 

experimental matrices configured through each DOE technique. 

From the results summarized in Tables 6–8, combinations of design 

Fig. 6 Detailed setup for design factors of the AOSC

DOE run #
DF-#1
(mm)

DF-#2
(mm)

DF-#3
(mm)

DF-#4
(mm)

DF-#5
(mm)

LC1-Stress
(MPa)

LC2-Stress
(MPa)

LC3-Stress
(MPa)

Weight
(Ton)

1 1.5 2.0 3.0 1.0 3.0 380.235 361.76 401.707 0.102

2 1.5 3.0 4.0 1.0 3.0 351.492 333.592 371.932 0.118

3 1.5 6.0 6.0 1.0 3.0 292.933 275.534 312.25 0.163

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

79 6.0 2.0 3.0 2.0 6.0 150.947 142.658 162.610 0.246

80 6.0 3.0 4.0 2.0 6.0 148.831 137.775 161.666 0.262

81 6.0 6.0 6.0 2.0 6.0 142.700 135.897 158.452 0.307

Table 7 DOE run table for the BBD method

DOE run #
DF-#1
(mm)

DF-#2
(mm)

DF-#3
(mm)

DF-#4
(mm)

DF-#5
(mm)

LC1-Stress
(MPa)

LC2-Stress
(MPa)

LC3-Stress
(MPa)

Weight
(Ton)

1 3.0 1.0 3.7 4.0 4.5 195.489 174.749 192.559 0.193

2 3.0 2.0 3.7 4.0 4.5 194.121 188.503 201.541 0.207

3 6.0 1.0 3.7 4.0 4.5 201.973 181.225 219.986 0.2017

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

39 4.5 2.0 3.7 2.0 4.5 205.034 184.206 201.340 0.188

40 4.5 2.0 3.7 6.0 4.5 193.310 172.53 190.529 0.236

41 4.5 1.5 3.7 4.0 4.5 198.581 177.792 195.323 0.204

Table 8 DOE run table for the CCD method

DOE run #
DF-#1
(mm)

DF-#2
(mm)

DF-#3
(mm)

DF-#4
(mm)

DF-#5
(mm)

LC1-Stress
(MPa)

LC2-Stress
(MPa)

LC3-Stress
(MPa)

Weight
(t)

1 3.0 1.0 1.5 2.0 3.0 380.235 361.760 401.707 0.102

2 3.0 1.0 1.5 2.0 6.0 375.933 357.500 396.333 0.115

3 3.0 1.0 1.5 6.0 3.0 329.727 297.065 324.220 0.150

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

41 4.0 1.5 2.5 6.0 4.0 244.688 219.646 258.191 0.191

42 4.0 1.5 2.5 3.0 3.0 268.999 242.611 286.073 0.151

43 4.0 1.5 2.5 3.0 6.0 258.978 235.593 283.710 0.164

Table 6 DOE run table for the OAD method
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factors for which the maximum stress under all design load cases was 

calculated at the allowable yield stress of 182.8 MPa or less were 

explored, among which the combination with the lowest weight 

increase rate was selected as the best design case. Table 9 shows the 

best design plan selected for each DOE technique.

As shown in Table 9, the best design case in all DOE methods 

satisfied the allowable yield stress at a level in which the maximum 

stress was similar for all design load cases compared to the initial 

design, although there was a variation in weight. Among the DOE 

methods for the structural design of the AOSC considered in this 

study, the CCD method exhibited a weight increase rate of 43.4%, 

which was superior to the OAD and BBD methods, while the BBD 

method showed the highest increase rate of 55.2%. In terms of the 

change in thickness of the main member, the main frame (DF-#1) 

thickness design factor tended to increase to the upper limit of 6.0 mm 

for all DOE techniques, while the remaining design factors showed 

variations of 1.0 mm or less. Considering the weight increase rate and 

the number of experiments of DOE, which represents the numerical 

calculation cost, CCD was shown to be the most efficient method for 

deriving improvement cases for the AOSC’s structural design. Fig. 7 

shows the overall stress and deformation distribution results of the 

enhanced best design case calculated from CCD for LC3. 

As shown in the results of Fig. 4 and Fig. 7, the maximum stress 

value was improved by 39% in the best design case compared to the 

initial design, the location of maximum stress moved from the main 

frame to the center bracket, and the maximum deformation was 

improved by 81%. The cause of the movement of the maximum stress 

location is attributed to the main frame member’s thickness increasing 

Initial design
Best design case from DOE

OAD BBD CCD

Design
factors

DF-#1 2.5 mm
6.0 mm

(↑3.5 mm)
6.0 mm

(↑3.5 mm)
6.0 mm

(↑3.5 mm)

DF-#2 3.0 mm
2.0 mm

(↓1.0 mm)
2.0 mm

(↓1.0 mm)
2.0 mm

(↓1.0 mm)

DF-#3 4.0 mm
 3.0 mm

(↓1.0 mm)
 4.5 mm

(↑0.5 mm)
 3.0 mm

(↓1.0 mm)

DF-#4 1.5 mm
1.0 mm

(↓0.5 mm)
1.5 mm

(0.0 mm)
1.0 mm

(↓0.5 mm)

DF-#5 4.0 mm
4.0 mm

(0.0 mm)
 4.5 mm

(↑0.5 mm)
3.0 mm

(↓1.0 mm)

Output
responses

Weight 155 kg
225.3 kg

(↑70.3 kg, 45.4%)
240.5 kg

(↑85.5 kg, 55.2%)
222.2 kg

(↑67.2kg, 43.4%)
LC1 – Loading 

(Max. von-Mises stress)
260.0 MPa

151.6 MPa
(↓108.4 MPa, 41.7%)

151.7 MPa
(↓108.3 MPa, 41.7%)

151.3 MPa
(↓108.8 MPa, 41.8%)

LC2 – Operation 
(Max. von-Mises stress)

236.6 MPa
134.2 MPa

(↓102.4 MPa, 43.3%)
148.8 MPa

(↓87.8 MPa, 37.1%)
143.4 MPa

(↓93.1 MPa, 39.4%)
LC3 – Braking 

(Max. von-Mises stress)
285.2 MPa

175.5 MPa
(↓109.7 MPa, 38.5%)

177.5 MPa
(↓107.7 MPa, 37.8%)

171.1 MPa
(↓114.1MPa, 39.3%)

Table 9 Best design cases for design enhancement of the AOSC

Fig. 7 LC3 - Overall stress and deformation contours for enhanced design based on the CCD method
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more than that of the bracket. Moreover, the overall structural safety 

improved as the maximum stress location moved from the main frame 

(main structural member) to the bracket (local member). A 

quantitative main effect analysis of the design factors for each 

response function was conducted according to the DOE method using 

the experimental matrix of OAD, BBD, and CCD, the results of which 

are shown in Table 10. The main effect is an indicator of the observed 

response function’s average change according to the change in the 

level of the design factor, i.e., the sensitivity. As such, the greater the 

effect calculated for each design factor, the higher the importance for 

the response function of that design factor.

As shown in Table 10, in all DOE methods, the effect of the main 

frame (DF-#1) was greatest on the maximum stress of the weight and 

design load cases, and the strength of the collector frame (DF-#4) 

showed the lowest main effect. The principal effect on weight was 

nearly identical in all DOE methods, while that on the strength of 

DF-#1 in BBD was higher than in the other DOE methods. 

Accordingly, an exploration of design enhancement cases applying 

various DOE techniques was performed. The results indicated that the 

most effective exploration method was to apply CCD to enhance the 

strength performance of the AOSC’s structural design, and that the 

main frame (DF-#1) was the most important structural member to 

consider in design.

3.3 Review of DOE Suitability Through Approximate Modeling

Because approximate models are typically generated from DOE, by 

quantitatively examining the accuracy of the generated approximate 

model, the overall suitability of the DOE method considering the 

number of experiments, the level of design variables, and DOE method 

selection, can be verified (Lee and Song, 2013). To verify the 

suitability of the sensitivity analysis results of major structural 

members and the exploration of AOSC improvement cases using 

various DOE techniques applied in Section 3.2, approximate modeling 

using RSM was conducted for each DOE technique, and the RSM 

design space exploration accuracy generated from each DOE 

technique was examined. The least-squares method can be used to 

define the RSM, a quadratic polynomial regression model, as follows 

(Song and Lee, 2010).

    
  



  
  




 

  



   (3)

From the  experimental points calculated using the DOE 

techniques (OAD, BBD, and CCD), if matrix  expressed by  basic 

variables and the real response vector  is given, then the relationship 

between  and  can be expressed as follows.

      (4)

To minimize the random error vector  and estimate the unknown 

RSM approximation coefficient vector  , a least squares function is 

applied as follows.

  


 
  (5)

Applying the approximation coefficient calculated from Eq. (5), the 

quadratic regression approximate model is expressed as follows.

  
  

  




  

  




 
 

  




  (6)

An RSM approximate model of Eq. (6) is generated for each 

response function using the results of the DOE techniques (OAD, 

BBD, and CCD). Fig. 8 shows the response surface results of DF-#1 

and DF-#5 (design factors with high main effect), and for LC3 (the 

braking case maximum stress response function) using the CDD 

method among the RSM approximate model results. 

Fig. 8 Response surface result for LC3 from the CCD method

Design factors
Weight LC1 – Max. stress LC2 – Max. stress LC3 – Max. stress

OAD BBD CCD OAD BBD CCD OAD BBD CCD OAD BBD CCD
DF-#1 58.7% 58.7% 58.6% 36.7% 44.1% 32.0% 35.4% 43.5% 31.2% 33.9% 37.8% 32.5%
DF-#2 23.5% 23.5% 23.6% 5.9% 4.1% 6.2% 6.3% 4.8% 6.8% 5.3% 3.6% 5.9%
DF-#3 6.3% 6.3% 6.3% 1.7% 2.8% 1.1% 0.7% 2.3% 0.5% 1.5% 2.0% 1.6%
DF-#4 7.1% 7.1% 7.1% 0.9% 0.7% 0.6% 1.4% 0.8% 1.6% 1.6% 0.7% 1.8%
DF-#5 4.5% 4.5% 4.5% 6.1% 2.8% 4.2% 5.1% 1.6% 3.7% 6.7% 4.4% 4.6%

Table 10 Main effect results
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Table 11 Comparison of RSM accuracy

Approximate 
model

  value

Weight
LC1 - 

Loading 
LC2 - 

Operation 
LC3 - 

Braking 

RSM - OAD 1.00 0.976 0.974 0.976

RSM - BBD 1.00 0.992 0.977 0.987

RSM - CCD 1.00 0.973 0.977 0.989

As shown in Fig. 8, the RSM, a quadratic regression approximate 

model, effectively approximates the nonlinear design space of 

von-Mises stress, the LC3 response function. 

The accuracy of the approximate model calculated from each DOE 

method is determined by   as shown in Eq. (7).

   
  



   (7)

where   is the actual value,   is the predicted value estimated from 

the approximate model, and   is the average of the actual values. 

When   is 1.0, the predicted value estimated from the approximate 

model exactly matches the actual value in the entire design space. 

Table 11 shows the accuracy analysis results of the RSM generated by 

the response function using each DOE technique.

As shown in Table 11, the accuracy of the approximated RSM was 

very high for each response function. The accuracy of the approximate 

model of weight was 1.0, which signifies no difference with the actual 

value for all DOE techniques. In terms of the accuracy of the 

approximate model for the response function under each design load 

case, an error of less than 3% of the actual value was observed, and the 

difference between DOE methods was found to be very small. 

Therefore, this study found that the overall DOE implementation 

method used to analyze the sensitivity of major structural members 

and explore enhanced design cases of the AOSC’s structure was 

reasonable, which includes the number of experiments, levels of 

design variables, and DOE method selection.

4. Conclusions

To efficiently derive a design improvement case that secures the 

design safety of the AOSC, this study explored best design cases 

applying various DOE techniques, conducted a sensitivity analysis of 

major structural members, and compared the results according to DOE 

characteristics. The key findings of this study are summarized as 

follows.

(1) The structural analysis results of the initial design stage 

demonstrated that design improvements are required to secure the 

strength and safety of the AOSC’s structural design. For this purpose, 

the influence of the major design members on strength performance 

was analyzed using DOE, and design improvement cases that satisfy 

the allowable stress while minimizing weight increase were explored. 

(2) Among the three DOE methods considered in this study (OAD, 

BBD, and CCD), the best design case in all DOE methods satisfied the 

allowable yield stress at a level in which the maximum stress was 

similar for all design load cases compared to the initial design, 

although there was a variation in weight. The weight increase rate of 

CCD was lower than that of OAD and BBD, and that of BBD was the 

highest. Considering the weight increase rate and the number of 

experiments of DOE, which represents the numerical calculation cost, 

CCD was shown to be the most efficient method for deriving 

improvement cases for the AOSC’s structural design. 

(3) Given that the design problem investigated in this study in 

relation to CCD involves the nonlinear response characteristics of 

stress and five design factors, it was found that the most suitable 

method to evaluate the main effect and generate a high-accuracy 

approximate model is to conduct 43 runs of three-level experiments.

(4) As demonstrated in the structural design sensitivity analysis, in 

all DOE methods, the effect of the main frame (DF-#1) was greatest on 

the maximum stress of the weight and design load cases, and the 

strength of the collector frame (DF-#4) showed the lowest significant 

effect. The main effect on weight was nearly identical in all DOE 

methods, while that on the strength of DF-#1 in BBD was higher than 

the other DOE methods. 

(5) To verify the suitability of the sensitivity analysis results of 

major structural members and the exploration of DOE-based AOSC 

improvement cases applied in this study, approximate modeling using 

RSM was conducted for each DOE technique. The design space 

exploration accuracy of RSM generated from each DOE method was 

examined. According to the results, the accuracy of the approximate 

model did not differ from the actual value in all DOE methods, and in 

terms of the accuracy of the approximate model for the response 

function under each design load case, an error of less than 3% of the 

actual value was observed, and the difference between DOE methods 

was found to be very small. 

(6) This study found that the overall DOE implementation method 

used to analyze the sensitivity of major structural members and 

explore enhanced design cases of the AOSC’s structure was 

reasonable; this includes the number of experiments, level of design 

variables, and DOE method selection. The DOE method-based design 

exploration approach proposed in this study is considered to be useful 

for enhancing the design performance of ocean and fisheries 

equipment that rely on empirical design techniques or must apply new 

designs.
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1. Introduction

Fixed-type offshore structures consist of an upper topside and a 

lower supporting structures to support them. These structures are 

designed to continuously produce gas and oil at the targeted 

installation site during the design life. Therefore, it may result in a 

considerable economic loss when damages or failures of such 

structures occur. Furthermore, since most of the fixed-type offshore 

structures are located at a distance from land and isolated, there are 

significant limitations for its repair. Therefore, designing a fixed 

offshore structure requires a high level of structural safety, which is 

strictly governed by the regulations of classification society. Designs 

based on the regulations of classification society are known to result in 

a safe fixed-type offshore structures. However, when series of 

hurricanes struck the Gulf of Mexico in 2005, more than 100 offshore 

structures were destroyed and over 50 were damaged. Therefore, it is 

necessary to develop a novel fixed-type offshore structure design 

beyond the existing regulations of classification society which can 

improve the structural stiffness. 

Topology optimization maximizes the performance of the structure 

under given constraints. Compared to the size and shape optimizations, 

topology optimization has an advantage that it can yield a dramatic 

change in the topology of the resulting optimal design. Therefore, 

topology optimization has been widely used in various areas since its 

introduction by Bendsoe and Kikuchi (1988). However, the optimal 

design obtained through topology optimization was considerably 

challenging to implement because it has an unclear interface owing to 

the intermediate material density resulting from the characteristics of 
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the solid isotropic material with penalization (SIMP) method 

(Bendsoe, 1995). Therefore, efforts have been undertaken to overcome 

the shortcomings of the stepped boundary obtained through topology 

optimization using the level-set function. However, due to the 

development of three-dimensional (3D) printing technology and 

advancement of computer aided design (CAD) technology, constraints 

on implementing the optimal design obtained from the topology 

optimization have been resolved and again topology optimization is 

attracting attention.

Since most of the obstacles on the implementation of optimal design 

from topology optimization, the method is gradually applied in the 

design of offshore structures. Lee et al. (2016) applied the topology 

optimization method to the design of the transition piece between a 

fixed-type wind turbine and a jacket-type supporting structure. They 

developed an optimal design where weight and stress concentration are 

reduced compared to the original design. Furthermore, the optimal 

design of transition piece improved the fatigue life of the offshore 

structure. Also, Kim et al. (2017) applied the topology optimization 

method to develop a new design of fixed jacket offshore structure 

panel which maximizes structural stiffness while utilizing the same 

amount of material of the original design that is based on the rules of 

classification society and compared there performance numerically. 

Furthermore, Lee et al. (2018) experimentally verified an optimal 

design of a two-dimensional (2D) fixed jacket offshore structure panel 

obtained through topology optimization using a universal testing 

machine (UTM) and 3D metal printing technology. In addition, 

although it is slightly different approach that was made in this 

research, a study was conducted to derive the optimal connectivity of 

structural members for the helideck of offshore structures, using a 

genetic algorithm and an attainable design set concept (Sim and Ha, 

2019). However, in the previous studies, the topology optimization 

method was limitedly applied to the substructures or approximate 2D 

structures of offshore structures. Furthermore, the optimal 

connectivity of members was derived only for the joints predefined in 

the formulation process. Therefore, it is necessary to develop a novel 

offshore structure design by applying topology optimization to the 

entire structure. 

In this study, the optimal design of a 2D fixed jacket offshore 

structure panel performed by Kim et al. (2017) to examine the 

applicability of the topology optimization method to offshore 

structures was expanded to 3D topology optimization of fixed offshore 

structures to consider the out-of-plane displacement. A 3D fixed 

offshore structure was designed to be installed at a certain target 

location using the scantling method and structural strength evaluation 

method proposed by Lee et al. (2017) and Kim et al. (2018). The 3D 

topology optimization of the fixed offshore structure was performed 

by using ANSYS, a commercial structural analysis software, to 

maximize structural stiffness under the constraint of utilizing the same 

amount of materials as the original design which is based on 

classification society rules. Furthermore, to investigate the influence 

of the legs of fixed-type offshore structures, which are major members 

to support the entire structure from external loads, they were 

considered in the design domain selectively and the results were 

compared. Furthermore, a structural test was carried out for each 

design by utilizing 3D printing technology, non-contact video 

extensometer, and UTM under compressive load. Through the 

experiment, improvement in the performance of the optimal design 

obtained from topology optimization was experimentally verified by 

comparing the behavior with the original design based on the 

classification society rules. 

2. Optimal Design of Fixed Offshore Structure 

2.1 Design of Fixed Offshore Structure Based on Classification 

Society Rules

The design of fixed offshore structures based on the classification 

society rules is performed using cylindrical members. However, since 

the topology optimization in this study is performed based on 3D solid 

elements, these were considered with square cross-sections for 

experimentall validation as shown in Fig. 1(a). A 130m fixed jacket 

structure (Kim et., 2018), which is designed based on the AISC 

(American Institute of Steel Construction) Code of Standard Practice 

for Steel Buildings and Bridges (AISC, 2016) and API(American 

Institute of Steel Construction) Recommended Practice 2A-WSD (API, 

2002), was used as a reference for the original design of 3D fixed 

offshore structure considered in this research. Here, wind, wave, and 

current loads at extreme condition were considered as external loads 

acting on the structure. The applied wind load was 53 m/s. A wave with 

a height of 16 m was applied as the wave load, and the fifth order stream 

(a) 3D view of rule scantling based design

(b) Dimensions of rule scantling based design

Fig. 1 Rule scantling based design of fixed offshore structure
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function theory corresponding to a period of 14 s was applied. A profile 

which decreases with an increase in the water depth was used for the 

current load with the surface current velocity of 2.495 m/s. To compare 

the structural performance of the optimal design derived through 

topology optimization with that of the design based on the classification 

society rules, designs of the fixed offshore structure were fabricated 

utilizing 3D metal printer with the scale ratio of approximately 273:1. 

Dimensions of each member are shown in Fig. 1(b). 

2.2 3D Topology Optimization Formulation of the Fixed 

Offshore Structure

The 3D topology optimization of the fixed offshore structure based 

on the solid elements was formulated to minimize the structural 

compliance of the structure, so that the structural stiffness of the 

structure could be maximized. The structural compliance is expressed 

as the product of the external force   and displacement   for the 

number of elements (NE) in the entire design domain, as shown in Eq. 

(1). To compare and verify the high effectiveness of the optimal 

designs derived by topology optimization, a volume constraint using 

the relative material density   and initial volume  of each element 

is introduced as Eq. (2). Thereby, an amount of material () equal to 

that in the rule-based scantling design (shown in Fig. 1) could be used 

in the topology optimization. Based on SIMP, the design variables in 

the 3D topology optimization problem of the fixed offshore structure 

can be expressed with   and the initial material property   of each 

element as shown in Eq. (3). Here, the penalty parameter   was set as 

3. The penalty parameter interpolates the relative material density so 

that it can be close to the extreme values of 0.0 and 1.0 to reduce the 

proportion of members with intermediate densities in the topology 

optimization. It generally exhibits stable convergence at values 

(a) Displacement boundary condition

(b) Force boundary condition

Fig. 2 Boundary conditions for 3D topology optimization of fixed offshore structure
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between 2 and 4. Furthermore, a very small value was selected as the 

lower limit of the relative material density (as shown in Eq. (4)) to 

prevent singularity in numerical analysis owing to the void elements 

generated in the topology optimization process.

   
 



 (1)

  
  



 ≤  (2)

  
    (3)

  min ≤  ≤  (4)

2.3 Boundary Conditions and Design Domain for 3D Topology 

Optimization of the Fixed Offshore Structure

The displacement and force boundary conditions of the fixed 

offshore structure were assigned to the top and bottom of the structure, 

respectively, considering connectivity, as shown in Fig. 2. A fixed 

boundary condition is applied as the displacement boundary condition. 

A compression load owing to the self-weight of the topside structure 

was assigned as the force boundary condition. In general, fixed 

offshore structures experience large loads in the horizontal direction. 

However, in this study, a compression load of 5 kN caused by the 

self-weight of the top structure was assumed to seek the applicability 

of the topology optimization method to the design of fixed offshore 

structures. Topology optimization problem is a problem of 

determining the optimal connectivity of members (i.e., the topology), 

(a) Design domain including region of legs

(b) Design domain excluding region of legs

Fig. 3 Design domains for 3D topology optimization of fixed offshore structure
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which maximizes the stiffness of the structure under the given force 

and displacement boundary conditions. However variation in the 

magnitude of the loads within the elastic region does not significantly 

affect the result of the topology optimization. 

The blue colored area in Fig. 3 indicates the design domain 

considered in the topology optimization of the fixed offshore structure. 

To investigate the influence of the legs of original fixed offshore 

structure based on the rules of classification society, design domains 

with and without considering legs are introduced as Fig. 3(a) and Fig. 

3(b), respectively. The red colored areas, expect the legs, in Fig. 3 are 

the horizontal braces and are excluded from the design domains since 

the force and displacement boundary conditions are applied. A 

minimum member thickness constraint was applied to prevent the 

generation of thin members through the topology optimization. 

Symmetric conditions and minimum and maximum element sizes were 

additionally considered for the experimental validation of topology 

optimization results utilizing 3D metal printing. 

2.4 3D Topology Optimization of the Fixed Offshore Structure

The 3D topology optimization of the fixed offshore structure was 

performed using ANSYS Workbench Mechanical Enterprise 2019 R1, 

a commercial structural analysis software . Here, the static structural 

module and the topology optimization module were employed for 

structural analysis and topology optimization, respectively. The 3D 

optimal designs of the fixed offshore structure that satisfy the given 

displacement and force boundary conditions as well as the volume 

constraint were derived as shown in Fig. 4. When the legs of the fixed 

offshore structure were considered in the design domain under the 

(a) Optimal design without legs

(b) Optimal design with legs

Fig. 4 Optimal designs obtained from 3D topology optimization of fixed offshore structure
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Table 1 Volume comparison of each design

Design Volume (mm3) Ratio (%)

Rule scantling based design 23,385.66 100.00

Optimal design without legs 23,835.05 101.92

Optimal design with legs 23,500.26 100.49

compression load (Fig. 4(a)), the top sections of the legs were included 

in the load transfer path and their shapes were maintained. However, 

the bottom sections were replaced by the Y-shaped braces on both the 

sides. Meanwhile, when the legs were excluded from the design 

domain of the topology optimization (Fig. 4(b)), Y-shaped braces 

similar to the ones in the previous case were generated on both sides of 

the legs. However, these braces show a relatively thin thickness and 

wide width compared to the previous optimal design. It was also 

observed that horizontal braces for reinforcing the space between each 

plane were freshly generated to increase the stiffness for the 

out-of-plane displacement under the given load condition. Table 1 

compares the volumes of the optimal designs derived through 

topology optimization (shown in Fig. 4) with that of the rule-based 

scantling design (shown in Fig. 1). As shown in the table, the optimal 

designs obtained through topology optimization exhibited volume 

differences of less than 2%, from the rule-based scantling design.

2.5 Conversion of the Topology Optimization Results into CAD 

Data

The topology optimization of the fixed offshore structure was 

performed using ANSYS considering the constraints for 3D metal 

printing. Thus, it cannot stringently satisfy the volume constraint of 

the use of an amount of material equal to that in the rule-based 

scantling design, which was applied in this study. Therefore, in this 

study, the relative material densities of the elements that express the 

boundaries of the structure in the optimal designs obtained through 

topology optimization were adjusted so that the results of the topology 

optimization could match the amount of material in the rule-based 

scantling design with a maximum error of approximately 3%. In 

addition, the optimal designs obtained by the topology optimization 

are derived in the form of mesh data because the topology optimization 

method is based on the finite element method. Therefore, it is 

(a) CAD data of optimal design without legs

(b) CAD data of optimal design with legs

Fig. 5 Conversion of topology optimization results to CAD data

necessary to convert these mesh data into CAD information to 

fabricate specimens utilizing 3D metal printer to be used in the 

structural test for experimental validation of the topology optimization 

results. The mesh data derived through the topology optimization were 

directly converted into CAD information, i.e., into standard 

tessellation language (STL) geometry that satisfies the given volume 

constraint, using SpaceClaim of ANSYS Workbench Mechanical 

Enterprise 2019 R1. Fig. 5 shows the results of converting each 

optimal design of the fixed offshore structure into CAD information. 

3. Experimental Validation of Topology 

Optimization of Fixed Offshore Structure

3.1 Fabrication of Structural Test Specimens Using a 3D Metal 

Printer

To experimentally verify the effectiveness of topology optimization, 

the specimens of the rule-based scantling design and the optimal 

designs derived through 3D topology optimization were fabricated 

from Inconel 718 (a nickel–chromium-based alloy) and a 3D metal 

printer, as shown in Fig. 6. The properties of materials do not 

significantly affect its results because topology optimization aims to 

(a) Rule scantling based design (b) Optimal design without legs (c) Optimal design with legs

Fig. 6 Manufacturing of fixed offshore structure designs by utilizing 3D metal printer
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Table 2 Mechanical properties of Inconel 718

Material
Density 
(g/cm3)

Tensile strength 
(MPa)

Yield strength 
(MPa)

Inconel 718 8.19 1,350 1,180

determine the connectivity of materials that maximizes the stiffness of 

the structure. Inconel 718, one of the commonly used materials for 3D 

metal printing, was used in this study to examine the applicability of 

topology optimization to the design of fixed offshore structures. Its 

mechanical properties are summarized in Table 2.

3.2 Experimental Validation of the Topology Optimization 

Results

A structural test was conducted under compressive loading using a 

100 ton UTM (as shown in Fig. 7) for experimental validation of each 

optimal design of the fixed offshore structure obtained from 3D 

topology optimization. The UTM was set to control the maximum 

displacement of the specimen, and it was operated at the rate of 5 

mm/min. The test was conducted until each specimen fractured as 

shown in Fig. 8. Through the structural test, the displacement and load 

under compressive loading were derived for the rule-based scantling 

design, optimal design without legs in the design domain, and optimal 

design with legs in the design domain. The reaction force of each 

structure measured by the UTM according to the vertical displacement 

is expressed through the force–displacement curves in Fig. 9. Since 

topology optimization is a method for determining the connectivity of 

members that maximizes the stiffness of the structure in the elastic 

region, the degree of improvement in the stiffness of the structure 

because of topology optimization can be obtained by comparing the 

displacement of the optimal designs derived through topology 

optimization to that of the existing design under a similar load. The 

topology optimization of the fixed offshore structure was performed 

considering a design load of 5 kN, where the structure is assumed to be 

within the elastic region. However, in this study, we compared the 

displacement and its ratio when 100 kN load is applied to clearly show 

the effectiveness of topology optimization, as tabulated in Table 3, 

since the original rule based offshore jacket design is out of elastic 

region while optimal designs are still inside or at the end stage of 

elastic region. As shown in the table, the optimal design that did not 

consider legs in the design domain during topology optimization and 

the optimal design that included legs in the design domain exhibited 

approximately 30% and 12% lower displacement, respectively, 

compared with the rule-based scantling design under the same load. 

This result is due to the improvement in the structural stiffness of the 

fixed offshore structure from topology optimization. It was also 

observed that the optimal design that did not consider the legs of the 

rule-based scantling design exhibited a higher degree of improvement 

in structural stiffness than the optimal design that included the legs, 

under compressive loading. However, the optimal design when legs 

are considered in the design domain showed a higher fracture load than 

the optimal design without legs considered in the design domain, 

(a) Experiment of rule scantling based design (b) Experiment of optimal design without legs (c) Experiment of optimal design with legs

Fig. 7 Structural experiment of fixed offshore structure designs by utilizing UTM

(a) Rule scantling based design specimen (b) Optimal design without legs specimen (c) Optimal design with legs specimen

Fig. 8 Last step of the structural experiments of each specimen
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Table 3 Displacement and load comparison

Displacement at 
100 kN (mm)

Displacement 
Ratio

RCS design 1.46 1.00

Optimal design without legs 1.04 0.71

Optimal design with legs 1.29 0.88

although it exhibited relatively lower structural stiffness. This implies 

that when rule-based scantling method, which has been developed 

based on long experience and knowledge, and the topology 

optimization method, which is capable of deriving innovative design 

and optimal connectivity, are effectively combined, it is possible to 

improve the structural stiffness as well as their structural performance. 

4. Conclusion

In this study, the optimal designs of a fixed offshore structure with 

improved structural stiffness were derived through 3D topology 

optimization using the same amount of material as the original rule 

based design. To examine the influence of the legs of the rule-based 

scantling design on the structural stiffness of the structure, they were 

considered selectively in the design domain of the topology 

optimization problem. For experimental validation, mesh and material 

data obtained from topology optimization is converted to CAD data 

utilizing ANSYS SpaceClaim and manufactured employing 3D metal 

printing technology. 

Through the structural experiment utilizing UTM, it is shown that 

optimal designs obtained from topology optimization show 

improvement in structural stiffness compared to the original rule- 

based design. Optimal design which considered legs as design domain 

showed higher structural stiffness compared to the one not considering 

legs in the design domain. However, the optimal design derived when 

the legs were not considered in the design domain of the topology 

optimization problem showed the highest fracture load, although the 

degree of improvement in its structural stiffness was relatively lower 

than that when the legs were considered. This implies that it is possible 

to improve the stiffness and structural performance of structures by 

effectively combining the rule-based scantling method with the 

topology optimization method, which is capable of deriving the 

connectivity of members that improves the structural stiffness of fixed 

offshore structures. Although to implement this developed technique 

to the industry, a method which can consider cylindrical members in 

topology optimization, as well as consideration of manufacturability, 

productivity, transportation, and various environmental loadings is 

necessary. Furthermore, it is also essential to review the structural 

safety based on the rules of classification society of the proposed 

optimal designs. 
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1. Introduction

Simulation-driven design is one of the most important methods for 

ship optimization. With the development of computer-aided design 

technology, research on hull shape optimization through computer 

simulation has gradually been applied to design more energy-efficient 

and environmentally friendly ships. In the preliminary design stage, it 

is very important to optimize the hydrodynamic characteristics of the 

hull form. As computers speed up and memory grows, researchers are 

experimenting more with Computer Aided Design (CAD) and 

simulation (CFD) methods. 

Due to the complex geometry shape of a ship's hull, it is difficult to 

use numerical methods to describe it. Therefore, researchers often 

choose to modify the hull form by making changes to a basic design. 

Lackenby (1950) developed a method to modify a hull by controlling 

the position of the center of buoyancy and shifting the section curves. 

Since then, the Lackenby method has been widely used in hull 

modification. 

In recent years, there have mainly been two popular ways of 

modifying a bulbous bow geometry: parametric modeling and the 

Free-Form Deformation (FFD) method. Chrismianto and Kim (2014) 

used a Cubic Bezier curve and curve-plan intersection methods to 

generate a parametric bulbous bow. Luo and Lan (2017) used a 

B-Spline curve and NURBS curve to generate a parametric bulbous 

bow in the CAD-CFD integration platform CAESES. Plug-in software 

called Grasshopper was used to generate a parametric bulbous bow 

from a few vertexes and NURBS curves. 

The wave-making resistance of a ship hull depends largely on the 

bow part (the area between the stem and mid-ship). It is efficient to 

optimize the bow part of a ship to reduce the wave-making resistance. 

The bulbous bow and the hull between the bulbous bow and mid-ship 

are two main parameters to optimize.

Different governing equations are used in a CFD solver to predict a 

ship hull’s hydrodynamic performance. One of the most popular 

methods is the Reynolds averaged Navier-Stokes (RANS) method. 

Zhang et al. (2018) used the RANS method to calculate the total 

resistance in an optimization framework (Park et al., 2019; Kim et al., 

2019). Usually, hundreds of simulations are carried out in an 

optimization process, and the hydrodynamic performance prediction 

can be quite a time consuming. Researchers have tried different ways 

to reduce the computing time. Han et al. (2012) selected a non-linear 

potential flow using the Rankine panel method to predict trim and sink 
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during a simulation. Kostas et al. (2015) used the Neumann-Kelvin 

formulation and the boundary element method (BEM) to simulate the 

wave-making resistance. 

Many kinds of optimization equations have been used to find an 

optimal solution quickly and accurately. Zhang et al. (2018) used the 

Particle Swarm Optimization (PSO) algorithm to help find an optimal 

bulbous bow. Huang et al. (2016) implemented a “new improved 

Artificial Bee Colony” (NIABC) algorithm in KCS hull optimization. 

Gammon implemented a Multi-Objective Genetic Algorithm (MOGA) 

in the optimization of a fishing vessel, and the optimization equations 

showed high accuracy and efficiency. 

In this study, the wave-making resistance of a catamaran in calm 

water was selected as the objective function for optimization. The 

length, breadth, and angle of the bulbous bow were modified by the 

FFD method and then optimized by the Non-dominated Sorting Genetic 

Algorithm (NSGA)-II. The bow part was optimized by simulating nine 

different hull forms that were modified by the Lackenby method and 

then comparing them. Finally, after obtaining the optimal demi-hull, 

the distance between two demi-hulls was optimized. 

2. Demi-hull Geometry Modification Method 

2.1 Bulbous Bow Modification

The FFD and Lackenby methods were applied to modify the hull 

geometry. The bulbous bow area begins from station No. 20, and it 

was modified in three dimensions: the length, breadth, and its angle 

with the baseline. Fig. 1 shows how the FFD method is applied to 

the bulbous bow. The bulbous bow shape is modified by a control 

box with certain control points on it (Tomas and Scott, 1986). The 

bulbous bow angle α is defined in Fig. 1c as the angle between the 

base line and the rotated control box. The clockwise direction is 

defined as positive, and the anticlockwise direction is defined as 

negative. 

Fig. 2 shows the length of the bulbous bow modified under the 

constraint of -0.02LOA ≤ ΔL ≤ 0.02LOA, where ΔL is the change 

of length of the bulbous bow, and LOA is the overall length. Fig. 3 

shows the breadth of the bow modified under the constraint of 0.8B ≤ 

B’ ≤ 1.3B, where B is the original breadth of the bow, and B’ is the 

breadth of the new bow. Fig. 4 shows the angle of the bow modified 

under the constraint of -9° ≤ α ≤ 3°, where α is the difference from 

the original angle. 

(a) (b) (c)

Fig. 1 The FFD method for the length (a), breadth (b) and angle 

(c) of the bulbous bow

(a) (b) (c)

Fig. 2 Right view of the bulbous bow at (a) ΔL of -0.02LOA, 

(b) original ΔL, and (c) ΔL of 0.02LOA 

(a) (b)

(c) (d)

Fig. 3 Front view (a) and Top view (b) of the bulbous bow at a 

breadth of 0.8B and front view (c) and top view (d) at a 

breadth of 1.3B

Fig. 4 Right view of the bulbous bow at an angle of -9° (left) 

and an angle of 3° (right)

2.2 Bow Part Modification

The bow part is the part of the hull between the bulbous bow and 

mid-ship. The Lackenby method was used for the bow part 

modification. The longitudinal center of buoyancy (LCB) was changed 

slightly while the displacement was kept constant. The change in LCB 

(ΔLCB) was set as a design variable. Fig. 5 shows the bow part 
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Fig. 5 Sectional area curve of bow part with LCB moved forward 

by 0.4% (blue) and backward by 0.4% (red)

modified by moving the LCB by ±0.4%. The inflection point of the 

original sectional area curve was located around station 16, so this 

station was set to be the modification center. 

3. Numerical Calculation by STAR-CCM+

A high-speed catamaran was selected as an example for 

optimization, and its main data are shown in Table 1. The high-speed 

catamaran travels with a high Froude number (i.e., Fn > 0.3). In this 

case, the viscous resistance is usually a smaller proportion of the total 

resistance, and the contribution of the bow part to the viscous 

resistance is negligible. Therefore, optimizing the resistance in an 

inviscid fluid is an effective way to optimize the performance of the 

high-speed ship. STAR-CCM+ was selected to perform the numerical 

simulation and evaluation, and the fluid model was set as an inviscid 

fluid model.

To reduce the computing time and ensure the accuracy of the wave 

pattern of the free surface, the mesh was set to be relatively thin in the 

Z direction and wide in the X and Y directions, as in Fig. 6. A total of 

460,000 mesh cells were generated, and the mesh is shown in Fig. 6.

Table 1 Main data of the demi-hull

Item Value
LOA 21.7 (m)
LPP 20.0 (m)
B 2.5 (m)
D 3.2 (m)
d 1.6 (m)
V 10.28 (m/s)
Fn 0.73

Fig. 6 Mesh distribution for the simulation

4. Software Integration and Demi-hull Optimization

4.1 Bulbous Bow Optimization

The resistance was simulated in STAR-CCM+ and fed back to 

CAESES by coupling the two programs. The FFD method was used to 

modify the bulbous bow shape with the design variables: the length, 

breadth, and angle. NSGA-II was then used to obtain the optimal 

bulbous bow. 

Fig. 7 shows a flow chart of the NSGA-II process for the design 

variables of the bulbous bow. Firstly, 27 initial design plans were 

generated by changing the bulbous bow length, breadth, and angle 

defined by the FFD method as the first generation. 27 simulations were 

then carried out in STAR-CCM+ to obtain the resistance results. The 

plans that performed well were selected to mutate and crossover to 

obtain the next generation.. New generations of hull plans were 

simulated and selected again and again until the resistance results 

converged. 

Fig. 8 shows the resistance results of the inviscid fluid after 5 

generations of different bulbous bow plans. The results are from 135 

simulations carried out by STAR-CCM+. The noted point represents 

the optimal solution. Fig. 9 shows the evolution of the length, breadth, 

and angle. It can be seen that the length converges to 1.018, the breadth 

converges to 1.14, and the angle converges to 2.64°.

Fig. 7 NSGA-II algorithm process in CASES

Fig. 8 Resistance of inviscid fluid after 5 generations 
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(a) Length

 

(b) Breadth

(c) Angle

Fig. 9 Design variables evolution in 5 generations

4.2 Bow Part Optimization

The bow part was modified by using the Lackenby method to shift 

the section curve, and the design variable was ΔLCB. A total of 9 

Fig. 10 Process of choosing the optimal demi-hull 

Fig. 11 Resistance for different bow part plans at Fn 0.73

Fig. 12 Wave pattern comparison between original and optimal 

hull at design speed.

different plans from the Lackenby method were computed, and the 

optimized demi-hull form was obtained. Fig. 10 shows a flow chart of 

choosing the optimal demi-hull. 

Fig. 11 shows the simulation results of the 9 different hull forms 

from the Lackenby method. The results show that the resistance was 

reduced by about 1% when the longitudinal center of buoyancy was 

moved backward by 0.3%. 

The wave pattern comparison is shown in Fig. 12. The 3 main 

differences are pointed out with 3 black squares. The wave pattern at 

the bow of the optimal demi-hull is smaller, and the wave pattern in the 

far field of the optimal demi-hull is lower than the original one.

5. Optimization of Distance Between Demi-hulls 

According to Millward (1992), the effect on the resistance 

coefficient is separated into three parts. The effect of the distance has 

no rules to follow when Fn is in the range of around 0.2 to 0.4. In the 

Fn range of 0.4 to 0.7, the distance between the demi-hulls has a 

positive correlation with the total wave-making resistance. When the 

distance between the demi-hulls is larger, the negative interference of 

the two demi-hulls is weaker. When Fn is beyond 0.7, the 2 lines of the 

resistance coefficient begin to cross, which means the effect of the 

distance also has no rules to follow. However, we do know that there is 

a potential optimal distance. 

With the design speed of the catamaran (Fn=0.73), 19 different 

cases of separation between the two demi-hulls were generated and 

simulated. The results are shown in Fig. 13. The resistance of the 

catamaran is smallest when S/L is 0.42. This means the optimal 

distance of the two demi-hulls is 8.4 m. S is the distance between the 
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Fig. 13 Resistance of the catamaran for different separation plans

two demi-hulls, and L is the length of the catamaran. The results show 

that the distance between the demi-hulls of the catamaran does have an 

optimal value in this case. 

6. Conclusion

The hull form of a high-speed catamaran was optimized by coupling 

the software CAESES and STAR-CCM+. The resistance simulation 

was carried out using the RANS method, and the fluid model was set 

to inviscid to reduce the computing time. The bulbous bow of the 

demi-hull was optimized by a genetic algorithm, and the forms were 

generated by the FFD method for various lengths, breadths, and 

angles. The bow part between the bulbous bow and the mid-ship was 

then optimized by simulating 9 different hull forms that were modified 

by the Lackenby method while keeping the displacement of the 

demi-hull constant. The design variable was ΔLCB. The distance 

between the two demi-hulls was then optimized by simulating 19 

different separation cases. 

The wave-making resistance of the optimal demi-hull was reduced 

by 6.2% compared to the original demi-hull. The total resistance of the 

catamaran had optimal performance when the distance between the 

two demi-hulls was 8.4 m (S/L=0.42). The results showed that this 

optimization loop is feasible and efficient. The NSGA-II algorithm 

was used for only the bulbous bow optimization, and the bow part was 

optimized independently. However, the bulbous bow and the bow part 

affect each other. Future work will focus on optimizing the bulbous 

bow and bow part of the hull together to find the best combination of 

the two parts.
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1. Introduction

Underwater acoustics is the study of the phenomena related to the 

generation, propagation, transmission and reception of sound waves in 

water. It is applied in a variety of underwater activities such as 

underwater communication, target detection, and investigation of 

marine resources and environments, mainly using sound navigation 

and ranging (SONAR) systems. The main objective of underwater 

acoustic remote sensing is to indirectly acquire information on a target 

of interest using acoustic data. To extract information from acoustic 

data, machine learning, which has been recently attracting significant 

attention, has been employed in a variety of ways. The machine 

learning techniques mainly used in underwater acoustics and their 

applications in passive SONAR systems are introduced in the first two 

parts of this work, respectively (Yang et al., 2020a; Yang et al., 

2020b). In the review article, we review the research on the application 

of machine learning in active SONAR systems for target detection and 

classification.

2. Active SONAR Signal Processing

The passive SONAR-based target localization technique discussed 

in the previous part (Yang et al., 2020b) can be applied to active 

SONAR systems without significant modification. However, a key 

difference between passive and active SONAR target detection is that, 

in passive SONAR systems, sounds generated by targets of interest 

such as ships and fish are received, whereas in active SONAR systems, 

the observer directly transmits a signal and receives a scattered signal 

from the target. Consequently, for active SONAR detection, various 

techniques have been developed to utilize the characteristics of the 

sound source or those of a scattered signal depending on the properties 

of the target, unlike in the case of passive SONAR detection. This 

review article is aimed primarily at discussing active target detection 

and classification.

2.1 Active Target Detection and Classification

Traditional active SONAR signal processing can be largely 

classified into the processes of (1) detecting the signal of interest, (2) 
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Fig. 1 Flow diagram of the normalization scheme depicting how 

the reverberation and background noise power is estimated 

from leading and lagging windows of auxiliary data. A 

conventional matched filter detector would compare the 

normalized data to a threshold to declare detection 

(Abraham and Willett, 2002).

identifying (or classifying) the signal of interest, and (3) tracking the 

signal of interest (Abraham, 2019). In particular, because active 

SONAR transmits a signal and detects a scattered signal from the 

target, noise that differs from the transmitted signal is removed before 

signal detection is performed, by using a matched filter after 

beamforming. However, because the signal scattered by the rough 

interface or underwater scatterer is also similar to the sound source 

signal, it cannot be conveniently removed even using a matched filter. 

In addition, the clutter signal scattered by the local domain, such as a 

sea floor outcrop, exhibits a behavior similar to that of the target 

signal. In this manner, when an active SONAR is in operation, a false 

alarm can be triggered by a scattered/clutter signal other than the target 

signal. Consequently, the target detection performance deteriorates.

In the typical target detection process, the target is identified based 

on a threshold. In particular, the cell-averaging constant false alarm 

rate (CFAR) is a tool for normalizing the signal considering the noise 

effect around the target signal of interest and for applying a threshold 

to increase the target detection performance (Fig. 1) (Abraham, 2019; 

Abraham and Willett, 2002). In addition, in another technique for 

improving the performance, a variable that incorporates the variation 

of the signal-to-noise ratio over time is designed to explore a section in 

which a scattered signal by the target exists (Abraham and Willett, 

2002).

In the aforementioned active SONAR signal processing, after the 

detection of the signal of interest, a post-processing technique such as 

clustering is applied to remove the clutter signals that exhibit a 

behavior similar to that of the target signal as much as possible. 

Finally, a SONAR operator manually determines whether the signal is 

the target or clutter by using the visual (e.g., spectrogram) or auditory 

(e.g., timbre) information of the signal. In an environment where 

clutter signals are likely to occur, such as shallow waters, the number 

of tasks for the SONAR operator increases. To reduce this workload, 

studies on the application of machine learning to active target signal 

detection have begun. In particular, the following techniques have 

been proposed to reduce the amount of computation. First, a target 

signal candidate group is searched by a conventional target detection 

method. In addition, a detector that has been trained with the target 

signal characteristics of active SONAR data is applied to determine 

whether the detected signal is the target signal (Young and Hines, 

2007). However, if the machine learning-based target signal classifier 

is applied directly to the entire acquired signal rather than being 

limited to the first detected target signal, the detection and 

classification steps of the conventional active SONAR signal 

processing can be integrated into one process (Shin et al., 1997). In this 

regard, machine learning-based target detection and machine 

learning-based target classification are used without distinction in this 

review article.

Gorman and Sejnowski (1988b) conducted the first classification of 

target signals by applying machine learning in underwater acoustics. 

In their studies, a metal cylinder and a cylindrical rock were selected as 

the target and the clutter, respectively. The target signals and 

clutter-scattered signals were measured according to the aspect angles. 

In particular, the linear frequency modulation signal was used as the 

sound source signal in their study. Based on the concept that the 

frequency variation of a scattered signal over time can be observed 

with a short-time Fourier transform, a spectral envelop displaying the 

frequency energy according to the observation time was used as the 

input value of the neural network. In addition, they experimentally 

demonstrated that the targets can be detected with a high and stable 

classification performance (that is, the effect of the initial value of an 

irregularly generated neural network is marginal) if the scattered signal 

of various aspect angles is included in the training data and the training 

is performed using a hidden layer and a neural network with a 

sufficient number of neurons. Furthermore, Gorman and Sejnowski 

(1988a) attempted to describe the neural network's classification 

process for target signals (using weights of a hidden layer and neurons 

activated thereby) in association with the scattered signal’s 

characteristics (bandwidth and onset/decay characteristics).

As described above, the machine learning-based target detection 

technique that applies the classify-before-detect strategy must utilize 

comprehensive information of the observation signal similar to how a 

SONAR operator uses various information to determine the target. In 

particular, to reduce false alarms caused by clutter signals, raw data 

must be converted to a domain that makes it convenient to distinguish 

target signals from clutter signals (Fig. 2). In this regard, as a 

representative example, Shin et al. (1997) observed and analyzed 

different target signals with respect to the shape or internal structure of 

the target. Furthermore, features effective for target/clutter signal 

identification were extracted to improve the target detection 

performance. These included time variations, frequency spectra, 
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Fig. 2 Selection of appropriate projection spaces can improve 

clutter-reduction performance. Stochastic impulsive sources 

generally enlarge the target and clutter spaces spanned by 

raw time-domain data. The main goal of projection-space 

investigation is to represent both classes (i.e., target and 

clutter) compactly in the transformation space for improved 

class separation and lower false alarm rate (Shin et al., 1997).

frequency variation over time, and auditory characteristics of the 

observed signals. Then, features optimized for target signal 

classification were selected and combined with several machine 

learning algorithms, including neural networks, to detect the target 

signals. This method displayed performance superior to that of the 

conventional method by producing fewer false alarms and higher 

target signal classification accuracy.

It was mentioned earlier that target detection becomes challenging 

owing to signals scattered by various underwater clutter. Nevertheless, 

the SONAR operator is trained to recognize the differences between 

the scattered target signal and the scattered clutter signal. Based on 

this, Young and Hines (2007) proposed a target signal detector 

reflecting the SONAR operator's auditory perception. In particular, 

acoustic cognitive features (timbre characteristics), which are the main 

aspects of interest in musical acoustics, were extracted from the signal 

duration containing the target or clutter signal. That is, the equivalent 

rectangular bandwidth (ERB) scale is defined based on the human 

tendency of analyzing the low frequency band in more detail while 

detecting a sound. In this nonlinear frequency scale, when a 

gammatone filter is applied to the original signal, the filtered time 

series signal can be obtained in each frequency band. The time delay 

between the start (or end) of the echo and the peak of the temporal 

envelop and the slope of the line joining the start (or end) of the echo 

and the peak of the temporal envelop obtained through the above 

process were used as features (Fig. 3(a)). In addition, the energy in 

each frequency band of the signal can be calculated through the above 

process, and a perceptual loudness function can be derived through the 

Fig. 3 (a) Extraction of sub-band attack time feature values from 

several channels of the auditory filter bank; the lowest trace 

exhibits the maximum sub-band attack time (maxSBAT) 

and the frequency of this filter bank channel corresponds to 

maxSBAT-F. (b) Extraction of peak loudness frequency 

(PLF), peak loudness value (PLV), and loudness centroid 

(LC) feature values from a perceptual loudness function 

(Young and Hines, 2007).

calculation (Fig. 3(b)). The feature vectors reflecting the auditory 

perception characteristics of humans were defined by combining the 

peak value of this function and the corresponding frequency with the 

previously designed features. Then, to avoid having an excessive 

number of dimensions, elements effective for target/clutter 

classification were selected from among the feature vector elements. 

Furthermore, the feature vector dimension was reduced through 

principal component analysis, and the resulting vectors were used as 

final input values. In this manner, the characteristics reflecting human 

auditory perception characteristics were combined with a simple 

machine learning algorithm such as a Gaussian classifier to classify 

target signals such as marine structures. Thereby, the target signals 

differing from clutter signals were classified with high accuracy.
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The performance of the target signal classifier reflecting the timbre 

characteristics is affected by the wave propagation phenomenon 

depending on the ocean environment, noise, and time-varying ocean 

environment. In this regard, Murphy and Hines (2014) tested the 

proposed target signal classifier for robustness against variations in the 

ocean environment, using target/clutter signals (Clutter07/Clutter09) 

measured in different environments. In this case, apart from 

characteristics of the ocean environment (such as underwater sound 

speed or noise), the experimental design factors including the transmitted 

signal for measuring the target/cutter signal, ship route, and object used 

Fig. 4 (a) Scatter plot of testing echoes in the reduced (two-dimensional) 

feature space. The circular gray target region contains 90% 

of the target echoes (black dots) and the surrounding white 

clutter region contains 64% of the clutter echoes (outlined white 

squares). (b) ROC curves corresponding to the training dataset 

(solid line) and testing dataset (dashed line). The training AUC 

value is 0.91 (outstanding discrimination), and the testing AUC 

value is 0.86 (excellent discrimination). The Bayes-rate operating 

point (black circle) is shown at (0.23, 0.89) on the training 

curve and at (0.36, 0.90) on the testing curve (Murphy and 

Hines, 2014).

as the target/clutter were set identically in both of experiments. 

In their study, the Gaussian classifier was used as a classifier 

similarly as in the previous study (Young and Hines, 2007). 

Furthermore, the data obtained from Clutter07 were used for training. 

The performance of the classifier can be evaluated through a receiver- 

operating-characteristic (ROC) curve displaying the relationship 

between the probability of detection and the probability of false alarm. 

The target classifier performance is determined by calculating the area 

under the ROC curve (AUC). The AUC has a value between zero and 

one. The closer the value is to one, the higher is the target classification 

performance. A value of 0.91 was obtained when the AUC was 

calculated by applying the classifier trained with Clutter07 data to data 

from among Clutter07 not used for training. This demonstrates that the 

timbre-based target detector displays remarkable classification 

performance. Furthermore, a classifier trained with Clutter07 data was 

applied to Clutter09 data to obtain an AUC value of 0.86 (Fig. 4). 

Although this value is low compared to the result of using test data 

obtained in an environment identical to that of the training data, it 

evidently exhibits remarkable classification performance. 

Another related study tested the auditory perception capability of 

humans to classify target/clutter signals and compared this capability 

with the performance of a timbre-based target signal classifier (Allen 

et al., 2011). The subjects participating in the target/clutter signal 

classification experiment were able to distinguish the target signal 

from the clutter signal while using acoustic signals in all the frequency 

bands. However, when the experiment was performed with scattered 

signals that removed the signal component of the low frequency band, 

the target classification rate was substantially reduced. However, the 

timbre-based target signal classifier showed similar performance to 

those of most subjects. In particular, it was observed that unlike 

humans, the performance of the classifier slightly decreased when the 

signal bandwidth was limited.

A study that analyzed the probability distribution characteristics of 

clutter signals that limit the operation of active SONAR and applied 

them to classification is described as follows. Gelb et al. (2010) 

distinguished between target and clutter using the distribution 

characteristics of the matched clutter signal according to space–time. 

The clutter signals can be divided into bottom-like, compact 

stationary, and compact nonstationary classes. In this study, the 

probability distribution of the observed signal according to the above 

classes was derived by applying K-distribution and generalized Pareto 

distribution to unthresholded data and thresholded data, respectively. 

At this time, if the parameters of each distribution are adjusted and 

fitted to the observed signal, the distribution of parameters depends on 

the clutter class. Meanwhile, it is possible to directly calculate 

cumulants from the locally observed signal according to the class. 

These cumulants are also distributed differently according to the 

clutter signal class. By combining this with a classifier that estimates a 

class based on the probability distribution of input features, such as a 

Gaussian mixture model, it was demonstrated that the clutter signal 

could be classified according to its class.
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2.2 Seafloor Target Detection and Classification

Active SONAR can be used to detect targets on the seafloor or 

buried in sediment, as well as underwater targets. Early statistical 

studies on the classification of buried targets using the monostatic 

SONAR system were performed to develop a target classification 

technique using signals received from different aspect angles of the 

target by utilizing one sensor. Runkle et al. (1999a; 1999b) extracted 

features from the signals scattered from the target using a matching 

pursuit technique, one of the sparse representation algorithms, and 

classified five types of objects using a hidden Markov model. In 

addition, at approximately the same time, the results of applying 

pattern recognition techniques different from those used in the above 

study to detect buried targets were also published (Trucco and 

Pescetto, 2000; Trucco, 2001). They segmented the beamformed 

signals into partially overlapping frames, projected them into the 

time-frequency space, and classified the extracted features using a 

multivariate Gaussian classifier. In particular, they demonstrated that 

this method performed well even with the data obtained by an active 

SONAR system operating remotely with a low grazing angle.

Azimi-Sadjadi, et al. (2000) applied wavelet packet decomposition 

and linear predictive coding to backscattered target/clutter signals to 

extract features that can conveniently classify target/clutter, and they 

combined them with a neural network to obtain a classifier that can 

classify a target signal with high performance. At this time, the target 

signals comprised a signal scattered from a bullet-shaped metal object 

and one from a plastic material object with a truncated cone shape. The 

clutter signals were scattered from four types of clutters: a water-filled 

drum, an irregularly shaped limestone rock, soft granite, and water- 

logged logs. These targets and clutters were placed in a water tank 

environment with a limited size. The target/clutter backscattered 

signals were measured according to the aspect angle. Then, to generate 

a realistic target/clutter backscattered signal, preprocessing was 

applied to remove the interference of signals from multiple paths in a 

limited tank environment. Subsequently, a simulated reverberation 

signal was added. Furthermore, in their study, pre-processed 

observation signals and transmission signals were divided into 

multiple bands using wavelet packet decomposition. Moreover, 

cross-correlation of observation signals and transmission signals in 

each segmented band was performed, and the results were expressed 

using an autoregressive (AR) model. Here, when high-dimensional 

feature vectors are generated by combining AR coefficients derived 

according to each segmented band, features effective for convenient 

identification of target/clutter signals are extracted using the Fisher 

discriminant function. In addition, the dimension of the input feature 

vectors is reduced. Training and test data were sorted according to 

aspect angle, and performance was evaluated by training a two-layer 

neural network using the aforementioned feature vectors as inputs. The 

classifier proposed in their study exhibited performance superior to 

those of other existing classifiers. In particular, the results obtained by 

combining the results of backscattered signal classification at adjacent 

aspect angles showed higher performance improvements over those 

using the backscattered signals of a single aspect angle.

Azimi-Sadjadi et al. (2002) improved the previously developed 

target classifier further and proposed an adaptive target classifier that 

can achieve high performance even when using test data obtained in a 

different environment from the ocean environment of the training data. 

Here, the basic classifier used as a non-adaptive classifier is identical 

to the aforementioned two-layer neural network. The adaptive target 

classifier proposed in this study transforms the input vector into a 

vector insensitive to variations in the environment by adding a linear 

mapping between the input and the hidden layer of the non-adaptive 

classifier. In this process, the non-adaptive classifier is fixed, and the 

weight for linear mapping is learned. In particular, the difference 

between the output values of the adaptive and non-adaptive classifiers 

is increased using K-nearest neighbors (K-NN) and a 2-D sigmoid cost 

function. In their study, the effectiveness of the proposed method was 

verified by using test data having reverberation levels different from 

those of the training data. The proposed adaptive classifier exhibited 

higher performance in an environment with a reverberation level 

higher than that of the existing classifier.

Meanwhile, while developing a target signal classifier, even when 

the same input vector is used, classification performance may vary 

according to the machine learning algorithm used and according to the 

characteristic of the input data. Li et al. (2004) combined the input 

vectors defined by Azimi-Sadjadi et al. (2000) with multivariate 

Gaussian, K-NN, probabilistic neural networks, and support vector 

machines (SVMs) in addition to neural networks. They also compared 

and analyzed their performances. Among these, the SVM-based target 

signal classifier exhibited the most stable and remarkable 

performance. In addition, Yao et al. (2002) compared the results of 

classification by using the classifier developed by Azimi-Sadjadi et al. 

(2000) for different data having bandwidths of 40 kHz and 80 kHz. 

The result was presented in terms of ROC, error locations, and 

generalization and robustness for the noise. In their study, the result 

obtained using data with the 80 kHz bandwidth showed higher 

classification performance. Accordingly, a sub-band fusion technique 

based on the contribution of each band with subdivision of the 

broadband data was also proposed.

2.3 AUV and Automatic Target Recognition System

Underwater image information obtained via sensors such as side 

scan SONAR or synthetic aperture SONAR is generally used when 

classifying targets on the seafloor, such as mines, using an autonomous 

underwater vehicle (AUV). Recently, several studies have been 

presented that produced high-performance, high-resolution image 

processing and classification results through the application of 

machine learning for automatic target recognition (Isaacs, 2015; 

Kriminger et al., 2015; Myers and Fawcett, 2010). However, these 

methods have a limitation in that real-time processing is challenging. 

In particular, targets buried in the sediment cannot be classified 

following these approaches. In this regard, Fischell and Schmidt 

(2015) proposed a machine learning-based signal processing technique 
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Fig. 5 Simulated scattering amplitude dependence on angle for 

spherical and cylindrical targets. is calculated by setting the 

target at (0, 0) and the source at (-60, 0) such that the source 

is at 180°. Amplitudes shown here are for multiple receiver 

depths and ranges to the target. (a) Spherical target. (b) 

Cylindrical target (Fischell and Schmidt, 2015).

capable of real-time target classification in a system installed on an 

AUV. In general, when a signal emitted from a fixed sound source is 

scattered by a target, the scattering intensity depends on the angle 

between the line joining the sound source and target and that joining 

the target and receiver (azimuthal angle). Here, the intensity of 

scattered radiation for a specific target varies only marginally 

according to the distance between the sound source and receiver or the 

depth of the receiver. However, it varies substantially according to the 

azimuthal angle. In addition, the scattering radiation pattern displayed 

for all the azimuthal angles is highly dependent on the type of target 

(Fig. 5). Therefore, in their study, an input vector for machine learning 

was defined by using a bistatic scattering radiation pattern. 

Furthermore, it was combined with SVM to perform classification into 

spherical and cylindrical targets. The scattering radiation pattern used 

for training was normalized using the mean and standard deviation of 

the scattering intensity and discretized at regular azimuthal angle 

intervals. In this case, if multiple scattering intensities exist in the 

same discrete azimuthal angle, the feature value of the corresponding 

azimuthal angle is calculated as the median value. In this manner, 

scattering radiation patterns for all the azimuthal angles discretized at 

specific intervals can be represented using vectors, which can be used 

as inputs to the SVM. This target classifier was tested according to the 

discrete interval of the azimuthal angle and the number of data. It was 

verified that real-time target shape classification is possible using data 

(BayEx'14) obtained by an AUV in a real underwater environment.

Meanwhile, the target scattering amplitude according to the 

azimuthal angle depends on the properties of the seafloor, depth of the 

surface layer of the marine sediments, and depth of burial of the target. 

Therefore, the performance of the target classifier may deteriorate 

when the ocean environment and the experimental conditions for 

obtaining the training data differ from those of the test data. To address 

this problem, Fischell and Schmidt (2017a) analyzed the performance 

of the sphere/cylinder target classifier according to the inconsistencies 

between the ocean environment and the experimental conditions and 

proposed a method to reduce the performance degradation. In 

particular, their study reduced the dependence on similar 

environmental variations by adding a process whereby the mean and 

variance of the vectorized discrete scattering radiation pattern became 

zero and one, respectively. In addition, in this study, bistatic scattering 

tendency according to the seafloor properties, surface depth of marine 

sediments, and depth of buried targets were calculated using a 

simulator and utilized as training data for learning. The actual 

measurement data were used as test data. Then, it was verified that in 

the training environment with seafloor properties identical to those of 

the operating environment of the AUV, good classification 

performance was obtained even under conditions where the depth of 

the surficial sediment or the degree of buried targets were inconsistent. 

However, a rapid performance degradation of the classifier was 

observed when the seafloor properties differed from those in the 

environment for actual data acquisition. In this case, simulation was 

performed by varying the depth of the surface layer and that of the 

buried target, using these as training data to improve the classifier 

performance. It is considered that these improved results were 

achieved because various scattering tendencies and conditions were 

provided as observation information compared to the use of only 

specific conditions.

In the case of a cylindrical-shaped target, the scattering radiation 

pattern varies depending on the aspect angle between the axis of the 

target and the line joining the sound source and target. Fischell and 

Schmidt (2017b) proposed a method for estimating the aspect of a 

target from the scattered signal of the target measured using an AUV 

by utilizing a scattering radiation pattern that depends on the aspect 

angle. In this technique utilizing SVM regression, the simulator 

generated normalized scattering radiation pattern according to the 

target's aspect angle and trained it. Even for the cases when the ocean 

environment of the simulation did not match the environment of actual 

test data acquisition, it was verified that the target aspect classifier 

trained with simulation data derived a specific aspect angle with high 

accuracy when feature vectors were constructed using a sufficient 

number of measurement signals.

3. Conclusion

This review article summarizes the trend in the recent application of 

the highly advanced machine learning technology for target detection 

and classification using an active SONAR system. Depending on the 

characteristics of the active SONAR system that utilizes the signal 

transmitted from the sound source and scattered by the target, existing 

conventional signal processing techniques, acoustic modeling, and 

machine learning complement each other and produce improved 

results in terms of various aspects such as sound source characteristics, 

target properties, and target/clutter signal characteristics. The machine 

learning-based active target detection secured sufficient information 

on the target by utilizing the signals received from various aspect 

angles of the target and the feature factors extracted from the 

time-frequency space. Hence, it is possible to achieve significant 

reduction in the number of false alarm caused by clutter with signal 

characteristics similar to those of the target. In addition, it is likely that 
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human error from individual experience, level of proficiency, and skill 

differences would be significantly reduced using the automatic target 

detection technology, to be developed in the future, through the use of 

target detection techniques that reflect and incorporate human auditory 

perception capability.

Acknowledgments

This research was supported by a grant from Endowment Project 

funded by KRISO (PES3570).

References

Abraham, D.A. (2019). Underwater Acoustic Signal Processing: 

Modeling, Detection, and Estimation. Springer.

Abraham, D.A., & Willett, P.K. (2002). Active Sonar Detection in 

Shallow Water Using the Page Test. IEEE Journal of Oceanic 

Engineering, 27(1), 35-46. https://doi.org/10.1109/48.989883

Allen, N., Hines, P.C., & Young, V.W. (2011). Performances of Human 

Listeners and an Automatic Aural Classifier in Discriminating 

between Sonar Target Echoes and Clutter. The Journal of the 

Acoustical Society of America, 130(3), 1287-1298. https:// 

doi.org/10.1121/1.3614549 

Azimi-Sadjadi, M.R., Yao, D., Huang, Q., & Dobeck, G.J. (2000). 

Underwater Target Classification Using Wavelet Packets and 

Neural Networks. IEEE Transactions on Neural Networks, 11(3), 

784-794. https://doi.org/10.1109/72.846748

Azimi-Sadjadi, M.R., Yao, D., Jamshidi, A.A., & Dobeck, G.J. (2002). 

Underwater Target Classification in Changing Environments 

Using an Adaptive Feature Mapping. IEEE Transactions on 

Neural Networks, 13(5), 1099-1111. https://doi.org/10.1109/ 

TNN.2002.1031942

Fischell, E.M., & Schmidt, H. (2015). Classification of Underwater 

Targets from Autonomous Underwater Vehicle Sampled Bistatic 

Acoustic Scattered Fields. The Journal of the Acoustical Society 

of America, 138(6), 3773-3784. https://doi.org/10.1121/1. 

4938017

Fischell, E.M., & Schmidt, H. (2017a). Environmental Effects on 

Seabed Object Bistatic Scattering Classification. The Journal of 

the Acoustical Society of America, 141(1), 28-37. https://doi.org/ 

10.1121/1.4972273

Fischell, E.M., & Schmidt, H. (2017b). Supervised Machine Learning 

for Estimation of Target Aspect Angle from Bistatic Acoustic 

Scattering. IEEE Journal of Oceanic Engineering, 42(4), 759-769. 

https://doi.org/10.1109/JOE.2017.2650759

Gelb, J.M., Heath, R.E., & Tipple, G.L. (2010). Statistics of Distinct 

Clutter Classes in Midfrequency Active Sonar. IEEE Journal of 

Oceanic Engineering, 35(2), 220-229. https://doi.org/10.1109/ 

JOE.2009.2031547

Gorman, R.P., & Sejnowski, T.J. (1988a). Analysis of Hidden Units in 

a Layered Network Trained to Classify Sonar Targets. Neural 

Networks, 1(1), 75-89. https://doi.org/10.1016/0893-6080(88) 

90023-8

Gorman, R.P., & Sejnowski, T.J. (1988b). Learned Classification of 

Sonar Targets Using a Massively Parallel Network. IEEE 

Transactions on Acoustics, Speech, and Signal Processing, 36(7), 

1135-1140. https://doi.org/10.1109/29.1640

Isaacs, J.C. (2015). Sonar Automatic Target Recognition for 

Underwater UXO Remediation. Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR) 

Workshops, 134-140.

Kriminger, E., Cobb, J.T., & Principe, J.C. (2015). Online Active 

Learning for Automatic Target Recognition. IEEE Journal of 

Oceanic Engineering, 40(3), 583-591. https://doi.org/10.1109/ 

JOE.2014.2340353

Li, D., Azimi-Sadjadi, M.R., & Robinson, M. (2004). Comparison of 

Different Classification Algorithms for Underwater Target 

Discrimination. IEEE Transactions on Neural Networks, 15(1), 

189-194. https://doi.org/10.1109/TNN.2003.820621

Murphy, S.M., & Hines, P.C. (2014). Examining the Robustness of 

Automated Aural Classification of Active Sonar Echoes. The 

Journal of the Acoustical Society of America, 135(2), 626-636. 

https://doi.org/10.1121/1.4861922

Myers, V., & Fawcett, J. (2010). A Template Matching Procedure for 

Automatic Target Recognition in Synthetic Aperture Sonar 

Imager. IEEE Signal Processing Letters, 17(7), 683-686. https:// 

doi.org/10.1109/LSP.2010.2051574

Runkle, P., Bharadwaj, P., Couchman, L., & Carin, L. (1999a). Hidden 

Markov Models for Multi-aspect Target Identification. IEEE 

Transactions on Signal Processing, 47(7), 2035-2040. https:// 

doi.org/10.1109/78.771050

Runkle, P., Carin, L., Couchman, L., Bucaro, J.A., & Yoder, T.J. 

(1999b). Multiaspect Identification of Submerged Elastic Targets 

via Wave-based Matching Pursuits and Hidden Markov Models. 

The Journal of the Acoustical Society of America, 106, 605–616. 

https://doi.org/10.1121/1.427029

Shin, F.B., Kil, D.H., & Wayland, R.F. (1997). Active Impulsive Echo 

Discrimination in Shallow Water by Mapping Target Physics- 

derived Features to Classifiers. IEEE Journal of Oceanic 

Engineering, 22(1), 66-80. https://doi.org/10.1109/48.557541

Trucco, A. (2001). Detection of Objects Buried in the Seafloor by a 

Pattern Recognition Approach. IEEE Journal of Oceanic 

Engineering, 26(4), 769-782. https://doi.org/10.1109/48.972118

Trucco, A., & Pescetto, A. (2000). Acoustic Detection of Objects Buried 

in the Seafloor. Electronics Letters, 36(18), 1595-1596. 

https://doi.org/10.1049/el:20001065

Yang, H., Lee, K., Choo, Y., Kim, K. (2020a). Underwater Acoustic 

Research Trends with Machine Learning: General Background. 

Journal of Ocean Engineering and Technology, 34(2), 147-154. 

https://doi.org/10.26748/KSOE.2020.015

Yang, H., Lee, K., Choo, Y., & Kim, K. (2020b). Underwater Acoustic 

Research Trends with Machine Learning: Passive SONAR 

Applications. Journal of Ocean Engineering and Technology, 

34(3), 227-236. https://doi.org/10.26748/KSOE.2020.017



284 Haesang Yang et al.

Yao, D., Azimi-Sadjadi, M.R., Jamshidi, A.A., & Dobeck, G.J. (2002). 

A Study of Effects of Sonar Bandwidth for Underwater Target 

Classification. IEEE Journal of Oceanic Engineering, 27(3), 

619-627. https://doi.org/10.1109/JOE.2002.1040944

Young, V.W., & Hines, P.C. (2007). Perception-based Automatic 

Classification of Impulsive-source Active Sonar Echoes. The 

Journal of the Acoustical Society of America, 122(3), 1502-1517. 

https://doi.org/10.1121/1.2767001

Author ORCIDs

Author name ORCID

Yang, Haesang 0000-0001-7101-5195

Byun, Sung-Hoon 0000-0001-6971-7489

Lee, Keunhwa 0000-0003-4827-3983

Choo, Youngmin 0000-0002-9100-9494

Kim, Kookhyun 0000-0002-4214-4673



Instructions for Authors

General information 
To submit a manuscript to the Journal of Ocean Engineering and 
Technology (JOET), it is advised to first carefully read the aims and 
the scope section of this journal, as it provides information on the 
editorial policy and the category of papers it accepts. Unlike many 
regular journals, JOET usually has no lag in acceptance of a 
manuscript and its publication. Authors that find a match with the 
aims and the scope of JOET are encouraged to submit as we publish 
works from all over the world. JOET adheres completely to guidelines 
and best practices published by professional organizations, including 
Principles of Transparency and Best Practice in Scholarly Publishing 
(joint statement by COPE, DOAJ, WAME, and OASPA 
(http://doaj.org/bestpractice) if otherwise not described below. As 
such, JOET would like to keep the principles and policies of those 
professional organizations during editing and the publication process.

Research and publication ethics
Details on publication ethics are found in http://joet.org/authors/ 
ethics.php. For the policies on research and publication ethics not 
stated in the Instructions, Guidelines on Good Publication 
(http://publicationethics.org/) can be applied.

Requirement for membership
One of the authors who submits a paper or papers should be member 
of the Korean Society of Ocean Engineers (KSOE), except a case 
that editorial board provides special admission of submission.

Publication type
Article types include scholarly monographs (original research articles), 
technical articles (technical reports and data), and review articles. The 
paper should have not been submitted to other academic journal. When 
part or whole of a manuscript was already published to conference 
papers, research reports, and dissertations, then the corresponding 
author should note it clearly in the manuscript.

Copyright
After published to JOET, the copyright of manuscripts should belong 
to KSOE. A transfer of copyright (publishing agreement) form can 
be found in submission website (http://www.joet.org).

Manuscript submission
Manuscript should be submitted through the on-line submission website 
(http://www.joet.org). The date that corresponding author submits a 
paper through on-line website is the official date of submission. Other 
correspondences can be sent by an email to the Editor in Chief or 
secretariat. The manuscript must be accompanied by a signed statement 
that it has been neither published nor currently submitted for publication 
elsewhere. The manuscript should be written in English or Korean. 
Ensure that online submission are in a standard word processing format 
(Hangul or MS Word are accepted). Ensure that graphics are high- 
resolution. Be sure all necessary files have been uploaded/ attached. 

Authors' checklist
Please refer to “Authors' Checklist” for details.

Article structure
Manuscript must be edited in the following order: (1) Title, (2) Authors' 
names and affiliations, (3) Keywords, (4) Abstract, (5) Nomenclature 
(optional), (6) Introduction, (7) Main body (analyses, tests, results, 
and discussions), (8) Conclusions, (9) Acknowledgements (optional), 
(10) References, (11) Appendices (optional).

Abstract
A concise and factual abstract is required. The abstract should state 
briefly the background, purpose and methods of the research, the 
principal results and conclusions. An abstract should be written in 
around 300 words. References are not cited in abstract whenever 
possible. Also, non-standard or uncommon abbreviations should be 
avoided, but if essential they must be defined at their first mention 
in the abstract itself.

Keywords
Immediately after the abstract, provide a maximum of 5 or 6 
keywords.

Unit
Use the international system units(SI). If other units are mentioned, 
please give their equivalent in SI.

Equations
All mathematical equations should be c1early printed/typed using well 
accepted explanation. Superscripts and subscripts should be typed 
clearly above or below the base line. Equation numbers should be 
given in Arabic numerals enclosed in parentheses on the right-hand 
margin.

Tables
Tables should be numbered consecutively with Arabic numerals. Each 
table should be fully titled. All tables should be referred to in the 
texts.

Figures
Figures should be numbered consecutively with Arabic numerals. Each 
figure should be fully titled. All figures should be referred to in the 
texts. All the illustrations should be of high quality meeting with the 
publishing requirement with legible symbols and legends.

Conflict of interest 
It should be disclosed here according to the statement in the Research 
and publication ethics regardless of existence of conflict of interest. 
If the authors have nothing to disclose, please state: “No potential 
conflict of interest relevant to this article was reported.”



Funding 
Funding to the research should be provided here. Providing a FundRef 
ID is recommended including the name of the funding agency, country 
and if available, the number of the grant provided by the funding 
agency. If the funding agency does not have a FundRef ID, please 
ask that agency to contact the FundRef registry (e-mail: 
fundref.registry@crossref.org). Additional detailed policy of FundRef 
description is available from http://www.crossref.org/fundref/. 
Example of a funding description is as follows:
The study is supported by the Inha University research fund (FundRef 
ID: 10.13039/501100002632), and the Korea Health Personnel 
Licensing Examination Institute research fund (FundRef ID: 10.13039/ 
501100003647).

Acknowledgments
Any persons that contributed to the study or the manuscript, but not 
meeting the requirements of an authorship could be placed here. For 
mentioning any persons or any organizations in this section, there 
should be a written permission from them.

References in text
References in texts follow the APA style. Authors can also see how 
references appear in manuscript text through the ‘Template’.

Reference list
Reference list follows the APA style. Authors can see how references 
should be given in reference section through the ‘Template’.

Appendices
The appendix is an optional section that can contain details and data 
supplemental to the main text. If there is more than an appendix, 
they should be identified as A, B, C, etc. Formulae and equations 
in appendices should be given separate numbering: Eq. (A1), Eq. (A2), 
etc.; in a subsequent appendix, Eq. (B1) and so on. Similarly for tables 
and figures: Table A1; Fig. A1, etc.

ORCID (Open Researcher and Contributor ID) 
All authors are recommended to provide an ORCID. To obtain an 
ORCID, authors should register in the ORCID web site: 
http://orcid.org. Registration is free to every researcher in the world. 
Example of ORCID description is as follows:

Joonmo Choung: https://orcid.org/0000-0003-1407-9031

Peer review and publication process 
The peer review process can be broadly summarized into three groups: 
author process, review process, and publishing process for accepted 
submissions. General scheme is presented in Figure 1.

Check-in process for review
If the manuscript does not fit the aims and scope of the Journal or 
does not adhere to the Instructions to Authors, it may be rejected 
immediately after receipt and without a review. Before reviewing, all 
submitted manuscripts are inspected by Similarity Check powered by 
iThenticate (https://www.crossref.org/services/similarity-check/), a 
plagiarism-screening tool. If a too high degree of similarity score is 
found, the Editorial Board will do a more profound content screening. 

Figure 1 Flow chart of the peer review and publication process of JOET

The criterion for similarity rate for further screening is usually 15%; 
however, rather than the similarity rate, the Editorial Board focuses 
on cases where specific sentences or phrases are similar. The settings 
for Similarity Check screening are as follows: It excludes quotes, 
bibliography, small matches of 6 words, small sources of 1%, and 
the Methods section.

Number of reviewers
Reviewers will be selected from the list of reviewers. Manuscripts 
are then peer reviewed by at least 2 experts in the corresponding 
field, usually by 2.

Peer review process and the author response to the reviewer comments
JOET adopts single blind review, which means that the authors do 
not know the identity of the reviews. All papers, including those 
invited by the Editor, are subject to peer review.

The review period is 4 weeks. Usually the first decision is made within 
a week after completion of the review. The Editorial Board’s decision 
after the review will be one of followings: Accept, Minor revision, 
Major revision, or Rejection. The Editorial Board may request the 
authors to revise the manuscript according to the reviewers’ comments. 
If there are any requests for revision of the manuscript by the 
reviewers, the authors should do their best to revise the manuscript. 
If the reviewer's opinion is not acceptable or is believed to misinterpret 
the data, the author should reasonably indicate that. After revising 
the manuscript, the author should upload the revised files with a 
separate response sheet to each item of the reviewer's commentary. 
The author's revisions should be completed within 3 months after the 
request. If it is not received by the due date, the Editorial Board will 
notify the author. To extend the revision period beyond 3 months, 
the author should negotiate that with the Editorial Board. The 
manuscript review process can be provided for up two rounds. If the 
authors wish further review, the Editorial Board may consider it. The 
Editorial Board will make a final decision on the approval of the 
submitted manuscript for publication and can request any further 
corrections, revisions, and deletions of the article text if necessary. 
Statistical editing is also performed if the data requires professional 
statistical review by a statistician.



Processing after acceptance
If the manuscript is finally accepted, the galley proof will be sent 
to the corresponding author after professional manuscript editing and 
English proofreading. Proofreading should be performed for any 
misspellings or errors by the authors. After final proofreading, the 
manuscript may appear at the journal homepage as an article in press 
with a unique DOI number for rapid communication. All published 
articles will be replaced by the replacement XML file and a final 
PDF. 

Feedback after publication
If the authors or readers find any errors, or contents that should be 
revised, it can be requested from the Editorial Board. The Editorial 
Board may consider erratum, corrigendum or a retraction. If there 
are any revisions to the article, there will be a CrossMark description 
to announce the final draft. If there is a reader’s opinion on the 
published article with the form of Letter to the editor, it will be 
forwarded to the authors. The authors can reply to the reader’s letter. 
Letter to the editor and the author’s reply may be also published.

How the journal handle complaints and appeals
The policy of JOET is primarily aimed at protecting the authors, 
reviewers, editors, and the publisher of the journal. If not described 
below, the process of handling complaints and appeals follows the 
guidelines of the Committee of Publication Ethics available from:

https://publicationethics.org/appeals

  - Who complains or makes an appeal?
Submitters, authors, reviewers, and readers may register complaints 
and appeals in a variety of cases as follows: falsification, fabrication, 
plagiarism, duplicate publication, authorship dispute, conflict of 
interest, ethical treatment of animals, informed consent, bias or 
unfair/inappropriate competitive acts, copyright, stolen data, 
defamation, and legal problem. If any individuals or institutions want 
to inform the cases, they can send a letter via the contact page on 
our website: https://www.joet.org/about/contact.php. For the complaints 

or appeals, concrete data with answers to all factual questions (who, 
when, where, what, how, why) should be provided.

  - Who is responsible to resolve and handle complaints and appeals?
The Editorial Board or Editorial Office is responsible for them. A 
legal consultant or ethics editor may be able to help with the decision 
making.

  - What may be the consequence of remedy?
It depends on the type or degree of misconduct. The consequence 
of resolution will follow the guidelines of the Committee of 
Publication Ethics (COPE).

Article processing charge
Payment due
Article processing charge (APC) covers the range of publishing 
services JOET provides. This includes provision of online tools for 
editors and authors, article production and hosting, and customer 
services. Upon editorial acceptance of an article for the regular review 
service and upon submission of an article for the fast review service, 
the corresponding author will be notified that payment is due.

APC
The APC up to 6 pages is ￦200,000 (or ＄200) for the regular review 
service and ￦550,000 (or ＄550) for the fast review service. For 
papers longer than 6 pages, an extra APC of $30 per page is charged. 
No taxes are included in this charge.

Payment methods
Credit card payment can be made online using a secure payment form 
as soon as the manuscript has been editorially accepted. We will we 
send a receipt by email once payment has been processed. Please 
note that payment by credit card carries a surcharge of 10% of the 
total APC.

Invoice payment is due within 7 days of the manuscript receiving 
editorial acceptance. Receipts are available on request.



JOET Templet 2020.08.05

Nomenclature

ITOC
LHV
Pw
T
V


Increment of total operating cost ($/yr)

Lower heating value (kJ/kg)

Power (kW)

Temperature (K)

Volume (m3)

Density (kg/m3)

1. Introduction
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work and its significance. The current state of the research field should 

be reviewed carefully and key publications cited. Please highlight 

controversial and diverging hypotheses when necessary. Finally, 

briefly mention the main aim of the work and highlight the principal 

conclusions. As far as possible, please keep the introduction 

comprehensible to scientists outside your particular field of research.
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and data. The paper should have not been submitted to other academic 

journal. Conference papers, research reports, dissertations and review 

articles can be submitted to Journal Of Ocean Engineering and 

Technology (JOET). When part or whole of a paper was already 

published to conference papers, research reports, dissertations, and 

review articles, then corresponding author should note it clearly in the 

manuscript. After published to JOET, the copyright of manuscript 

belongs to KSOE.

(example) It is noted that this paper is revised edition based on 

proceedings of KAOST 2100 in Jeju.
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website (http://www.joet.org). The date that corresponding author 

submits a paper through on-line website is official date of submission. 

Other correspondences can be sent by an email to the Editor in Chief. 

The manuscript must be accompanied by a signed statement that it has 

been neither published nor currently submitted for publication 
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minimum standard of the proficiency in the English or Korean language 

should be met before submission to the editorial office.

Ensure that online submission or submission by e-mail text files are 

in a standard word processing format (Hangul or MS Word are 

preferred). Ensure that graphics are high-resolution. Be sure all 

necessary files have been uploaded/attached. 

2.3.1 Authoer’s checklist and Transfer of copyright

Authoer’s checklist and Transfer of copyright can be found in 

submission hompage (http:/www.joet.org).

2.4 Research and Publication Ethics

Authorship should be limited to those who have made a significant 

contribution to the conception, design, execution, or interpretation of 

the reported study. All those who have made significant contributions 

should be listed as co-authors. Where there are others who have 

participated in certain substantive aspects of the research project, they 

should be acknowledged or listed as contributors.

The corresponding author should ensure that all appropriate 

co-authors and no inappropriate co-authors are included on the paper, 

and that all co-authors have seen and approved the final version of the 

paper and have agreed to its submission for publication.

Details on publication ethics are found in the journal's website 
(http://joet.org/authors/ethics.php). For the policies on research and 
publication ethics not stated in the Instructions, Guidelines on Good 
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3. Manuscript 

Manuscript must consist of as follow: (1) Title, (2) Author’s 

information (include title), (3) Key word, (4) Abstract, (5) 

Nomenclature description, (6) Introduction, (7) Body (analysis, test, 

results and discussion, (8) Conclusion, (9) Acknowledgements, (10) 

Reference, (11) Appendix, etc.

3.1 Unit

Use the international system units(SI). If other units are mentioned, 

please give their equivalent in SI.

3.2 Equations

All mathematical equations should be clearly printed/typed using 

well accepted explanation. Superscripts and subscripts should be typed 

clearly above or below the base line. Equation numbers should be 

given in Arabic numerals enclosed in parentheses on the right-hand 

margin. They should be cited in the text as, for example, Eq. (1), or 

Eqs. (1)-(3).

   exp⁄
  ≠

expexp⁄  
(1)

in which , ,
 
and  represent the location (“Shift” in figures), scale, and 

shape parameters, respectively.

3.3 Tables

Tables should be numbered consecutively with Arabic numerals. 

Each table should be typed on a separate sheet of paper and be fully 

titled. All tables should be referred to in the text.

Table 1 Tables should be placed in the main text near to the first time 

they are cited

Item Buoyancy riser

Segment length1 (m) 370

Outer diameter (m) 1.137

Inner diameter (m) 0.406

Dry weight (kg/m) 697

Bending rigidity (N·m2) 1.66E8

Axial stiffness (N) 7.098E9

Inner flow density (kg·m3) 881

Seabed stiffness (N/m/m2) 6,000

1Tables may have a footer.

3.4 Figures

All the illustrations should be of high quality meeting with the 

publishing requirement with legible symbols and legends. In preparing 

the illustrations, authors should consider a size reduction during the 

printing process to have acceptable line clarity and character sizes. All 

figures should have captions. They should be referred to in the text as, 

for example, Fig. 1, or Figs. 1-3.

(a) Description of what is 
contained in the first panel

(b) Description of what is 
contained in the first panel

Fig. 1 Schemes follow the same formatting. If there are multiple 

panels, they should be listed as: (a) Description of what is 

contained in the first panel; (b) Description of what is 

contained in the second panel. Figures should be placed in the 

main text near to the first time they are cited

3.5 How to describe the references in main texts

All references should be listed at the end of the manuscripts, arranged 

in order of Alphabet. References in texts follow the American 

Psychological Association (APA)  style. The exemplary form of listed 

references is as follows:

Single author: (Kim, 1998) or Kim (1998)

Two authors: (Kim and Lee, 2000) or Kim and Lee (2000)

Three or more authors: (Kim et al., 1997) or Kim et al. (1997)

Two or more papers: (Lee, 1995a; Lee, 1995b; Ryu et al., 1998)

Year unknown: (Kim, n.d.) or Kim (n.d.)
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4. Results 

This section may be divided by subheadings. It should provide a 

concise and precise description of the experimental results, their 

interpretation as well as the experimental conclusions that can be 

drawn. Tables and figures are recommended to present the results 

more rapidly and easily. Do not duplicate the content of a table or a 

figure with in the Results section. Briefly describe the core results 

related to the conclusion in the text when data are provided in tables or 

in figures. Supplementary results can be placed in the Appendix.

5. Discussion

Authors should discuss the results and how they can be interpreted 

in perspective of previous studies and of the working hypotheses. The 

findings and their implications should be discussed in the broadest 

context possible. Future research directions may also be highlighted

6. Conclusions

This section can be added to the manuscript.
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